Math, asked by rajeshkumar96548, 22 hours ago

two consecutive sides of a rectangle are in the ratio 3:2. if its perimeter is 150,then find its area.​

Answers

Answered by Anonymous
27

Given :

  • Ratio of Dimensions = 3:2
  • Perimeter = 150 units

 \\ \\

To Find :

  • Area = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese Let the Ratios :

  • Length = 3y
  • Breadth = 2y

 \\ \\

 \maltese Formula Used :

  •  {\underline{\boxed{\sf{ Perimeter = 2 \bigg( Length + Breadth \bigg) }}}}

  •  {\underline{\boxed{\sf{ Area = Length \times Breadth }}}}

 \\ \\

 \maltese Calculating the Value of y :

 \begin{gathered} \qquad \; \longmapsto \; \; \sf { Perimeter = 2 \bigg( Length + Breadth \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; \sf { 150 = 2 \bigg( 3y + 2y \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; \sf { 150 = 2 \times 5y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; \sf { 150 = 10y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; \sf { \dfrac{150}{10} = y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; \sf { \cancel\dfrac{150}{10} = y } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; {\underline{\boxed{\pmb{\frak{ y = 15 }}}}} \; {\purple{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \maltese Calculating the Dimensions :

  • Length = 3y = 3(15) = 45 Units
  • Breadth = 2y = 2(15) = 30 Units

 \\ \\

 \maltese Calculating the Area :

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = Length \times Breadth } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = 45 \times 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longmapsto \; \; {\underline{\boxed{\pmb{\frak{ Area = 1350 \; {units}^{2} }}}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Area of the Rectangle is 1350 .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by navanithishere
2

Answer: The area of rectangle is 1350 sq.m

Step-by-step explanation:

Given that the,

Sides of the rectangle are in the ratio of 3:2

Let the length l=2x

and the breadth b=3x

Now, We have to find the area of rectangle

perimeter =2(l+b)=150cm

2(3x+2x)=150

2(5x)=150

10x=150

x=15

Hence, we get the length and breadth of rectangle  are in the ratio 3:2

Therefore, Length l=2x=2*15=30cm

and the breadth b=3x=3*15=45cm

Area of rectangle = length × breadth ( l×b )

A = 30 x 45 = 1350 sq.m

Thus, we get the area of rectangle is 1350 sq.m

Similar questions