Math, asked by vijendrakatre79, 1 month ago


Two cross roads, each of width 5m, run at right angles through the centre of a rectangle
park of lengths 70m and breadth 45m and parallel to its sides. Find the area of the roads.

Answers

Answered by XxItzAnvayaXx
2

FINAL ANSWER:-

area of the roads ⇒ 550m^{2}

TO FIND:-

the area of the roads

GIVEN:-

Two cross roads, each of width⇒ 5 m

length of first parallel road ⇒ 70 m

breadth of park ⇒ 45m

FORMULA USED:-

area of rectangle = Length × Breadth

SOLUTION:-

area of first road = 70×5 ⇒ 350m^{2}

length of second road = 45 m

area of second road = 45×5 ⇒ 225 m^{2}

area of the common part of cross road with 5 m width that  lies at the center of the park = 5×5 ⇒ 25 m^{2}

area of roads = area of first road + area of second cross road−common area

=(350+225)-25\\=575-25\\=550m^{2}      

================================================================                                      

Attachments:
Answered by mathdude500
3

\large\underline{\bf{Solution-}}

Given that,

  • Rectangular Park = ABCD

  • Longer Path = EFGH

  • Shorter Path = PQRS

  • Common Path = WXYZ

Dimensions of field are

\rm :\longmapsto\:Length \:  of \:  rectangular  \: park,  \: l \: = \: 70 \: m</p><p>

\rm :\longmapsto\:Width \: of  \: rectangular \: park, \: b \: = \: 45 \: m

 \red{\rm :\longmapsto\:Length \: of \: the \:  shorter \: path,  \: l_1=45 \: m}

 \red{\rm :\longmapsto\:Breadth \: of \: the \:  shorter \: path,  \: b_1=5 \: m}

 \blue{\rm :\longmapsto\:Length \: of \: the \:  longer \: path,  \: l_2=70 \: m}

 \blue{\rm :\longmapsto\:Breadth \: of \: the \:  longer \: path,  \: b_2=5 \: m}

Consider,

 \red{\bf :\longmapsto\:Area \: of \: shorter \: path,  \: A_1=l_1×b_1}

\rm :\longmapsto\:A_1 = 45 \times 5

 \red{\bf :\longmapsto\:A_1 = 225 \:  {m}^{2}}

Consider,

 \blue{\bf :\longmapsto\:Area \: of \: longer \: path,  \: A_2=l_2×b_2}

\rm :\longmapsto\:A_2 = 70 \times 5

 \blue{\bf :\longmapsto\:A_2 = 350\:  {m}^{2}}

Thus,

Area of path (P) is given by,

 \green{\bf :\longmapsto\:P=A_1+A_2−Area \: of \: common \: path}

\rm :\longmapsto\:P=225 + 350 - 5 \times 5

\rm :\longmapsto\:P=575 - 25

 \green{\bf :\longmapsto\:P = 550 \:  {m}^{2}}

Additional Information :-

\boxed{ \sf \: Area_{(rectangle)} = length \times breadth}

\boxed{ \sf \: Area_{(square)} =  {(side)}^{2}}

\boxed{ \sf \: Area_{(rhombus)} = base \times height}

\boxed{ \sf \: Area_{(parallelogram)} = base \times height}

\boxed{ \sf \: Area_{(circle)} = \pi {r}^{2} }

Attachments:
Similar questions