Math, asked by shahir1, 10 months ago

Two cubes each of volume 64 cm3

are joined end to end together. Find the total surface area of
the resulting cuboid.​

Answers

Answered by deepupoonamsharma98
3

Answer:

384 Cm^2

Step-by-step explanation:

a^3 = 64

a = 4

end to end together then

a + a = 8

Total surface area = 6a^2

= 6 *8*8

= 384 cm^2

Hope it help u......

Answered by Diabolical
0

Answer:

The answer will be 160cm^{2}.

Step-by-step explanation:

So, we have given the volume of the cube i.e, 64cm^{3}.

Now, we know that the volume of cube is equal to Side * Side* Side i.e, Side^{3}.

Applying this fact,

                       Side^{3} = 64cm^{3}

                       Side = \sqrt[3]{64cm^{3}}

So, we get,

                      Side = 4cm

Now, when we join those two cubes of equal volume, then the dimension of newly formed structure will be

                    Side_{1} = 4+4 = 8;

                     Side_{2} = 4;

                    Side_{3} = 4;

Side_{2} and  Side_{3}  are same because if we join two cubes then only one dimension will increase not the all dimensions.

Now, total surface area of cuboid = 2(lb + bh +lh) or 2{(side1)(side2) + (side1)(side3) +(side2)(side3)}

So,total surface area = 2 {(8)(4) + (8)(4) +(4)(4)};

                            =2 {32 +32 + 16};

                            =2 {80};

                            = 160

Hence, the total surface area of the cuboid will be 160cm^{2} .

That's all .

Similar questions