Math, asked by Starboy23, 1 year ago

two cylindrical jars contain same amount of milk. If their diameters are in the ratio 3:4, find the ratio of their heights

Answers

Answered by NitinPetash
101
A.T.Q.
V1 = V2
π(r1)^2h¹ = π(r2)^2h2
[(r1)^2]/[(r2)^2] = h2/h1
[r1/r2]^2 = h2/h1
( 3/4 )^2 = h2/h1
9/16 =h2/h1

NitinPetash: x or ix
Starboy23: I am in 8 standard
Starboy23: and you?
Starboy23: are your exams going on??
Starboy23: please answer fast
NitinPetash: i am in x class
NitinPetash: and yeah.... my exams are also going on
Starboy23: ohh board exams...right
Starboy23: on which date is your next exam
Starboy23: ??
Answered by adventureisland
9

Answer:

(\boldsymbol{b}-\boldsymbol{c}) \times \boldsymbol{x}+(\boldsymbol{c}-\boldsymbol{a}) \times \boldsymbol{y}+(\boldsymbol{a}-\boldsymbol{b}) \times \boldsymbol{z}=0

Solution:

Let us assume,

\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}=1

We get,

\frac{x}{b+c-a}=1

x=(b+c-a)

\frac{y}{c+a-b}=1

y=(c+a-b)

\frac{z}{a+b-c}=1

z=(a+b-c)

To find: (b-c)x+(c-a)y+(a-b)z

(b-c) \times x+(c-a) \times y+(a-b) \times z

Substituting the values of x, y and z,

(b-c)(b+c-a)+(c-a)(c+a-b)+(a-b)(a+b-c)

On multiplying the terms we get,

(b-c)(b+c-a)=b^{2}+b c-a b-b c-c^{2}+a c

(b-c)(b+c-a)=b^{2}+b c-a b-b c-c^{2}+a c

(a-b)(a+b-c)=a^{2}+a b-a c-a b-b^{2}+b c

Equating all the terms we get,

b^{2}+b c-a b-b c-c^{2}+a c+c^{2}+a c-b c-a c-a^{2}+a b+a^{2}+a b-a c-a b-b^{2}+b c

=b^{2}-c^{2}-a b+a c+c^{2}-a^{2}-b c+a b+a^{2}-b^{2}-a c+b c=0

Similar questions