Math, asked by BrainlyHelper, 1 year ago

Two diflerent dice are thrown at the same time. Find the probability of getting :
(i) the sum of numbers on the two dice, greater than 9.
(ii) the surn of numbers on the two dice, less than 6.

Answers

Answered by nikitasingh79
29
 Two dice tossed simultaneously , than total number of events ( outcomes ) =  6 × 6 = 36

As we can show  all the possible outcomes

{1,1 } , {1,2 } , {1,3 }, {1,4 } ,{1,5 }, {1, 6 } ,

{ 2,1 } , {2 ,2 } , {2,3 }, {2,4 } ,{ 2 ,5 } ,{ 2,6 },  

{ 3,1 } ,{ 3,2 }, { 3,3 } , { 3,4 } ,{ 3 ,5 } ,{ 3,6 } ,

{ 4,1 } ,{ 4 ,2 }, { 4,3 } , { 4,4 } ,{ 4,5 } ,{ 4,6 } ,

{5,1 } {5,2 }, {5,3 } , {5,4 } ,{ 5,5 } , { 5,6 } ,

{6,1 } ,{ 6,2 }, { 6,3 } , { 6, 4 } ,{ 6 ,5 } , { 6,6 }


i)

Possible outcomes =

{ 4,6 },{ 5,5 } , { 5,6 }, { 6, 4 },{ 6 ,5 } , { 6,6 }


No. Of possible outcomes = 6


Probability (P) = 6/36= ⅙


ii)

Possible outcomes=  {1,1 } , {1,2 } {1,3 }, {1,4 }

{ 2,1 } , {2 ,2 } , {2,3 },{ 3,1 } ,{ 3,2 },{ 4,1 }


No. Of possible outcomes = 10



Probability (P) = 10/36= 5/18



================================================================================================================================

Hope this will help you....






Answered by Anonymous
61
Both Dice tossed simultaneously, so the total number of events = 6×6 == 36....

So, the all possible Outcomes will be ----

(1,1):(1,2):(1,3):(1,4):(1,5):(1,6)

(2,1):(2,2):(2,3):(2,4):(2,5):(2,6)

(3,1):(3,2):(3,3):(3,4):(3,5):(3,6)

(4,1):(4,2):(4,3):(4,4):(4,5):(4,6)

(5,1):(5,2):(5,3):(5,4):(5,5):(5,6)
(6,1):(6,2):(6,3):(6,4):(6,5):(6,6)

So..
1°°°° possible outcomes== (4,6):(5,5):(5,6):(6,4):(6,5):(6,6)...
No. of thier outcomes is 6
SO, PROBABILITY (p)→6/36→1/6 ..

2°°°°In this Possible outcomes---> (1,1):(1,2):(1,3):(1,4)
(2,1):(2,2):(2,3):(3,1):(3,2):(4,1)

So In this No. of possible outcomes-----10 ..

Hence, Probability (P) = 10/36== 5/18...
Similar questions