two dice are thrown simulataneously . then then write down the possible outcome dot and also find the probability of that outcomes in which the sum of outcome is odd
Answers
Answered by
77
Answer :-
Possible outcomes =
➩ 1 , 1
➩ 1 , 2
➩ 1 , 3
➩ 1 , 4
➩ 1 , 5
➩ 1 , 6
➩ 2 , 1
➩ 2 , 2
➩ 2 , 3
➩ 2 , 4
➩ 2 , 5
➩ 2 , 6
➩ 3 , 1
➩ 3 , 2
➩ 3 , 3
➩ 3 , 4
➩ 3 , 5
➩ 3 , 6
➩ 4 , 1
➩ 4 , 2
➩ 4 , 3
➩ 4 , 4
➩ 4 , 5
➩ 4 , 6
➩ 5 , 1
➩ 5 , 2
➩ 5 , 3
➩ 5 , 4
➩ 5 , 5
➩ 5 , 6
➩ 6 , 1
➩ 6 , 2
➩ 6 , 3
➩ 6 , 4
➩ 6 , 5
➩ 6 , 6
Possible outcomes whose sum are odd -
➩ 1 , 2
➩ 1 , 4
➩ 1 , 6
➩ 2 , 1
➩ 2 , 3
➩ 2 , 5
➩ 3 , 2
➩ 3 , 4
➩ 3 , 6
➩ 4 , 1
➩ 4 , 3
➩ 4 , 5
➩ 5 , 2
➩ 5 , 4
➩ 5 , 6
➩ 6 , 1
➩ 6 , 3
➩ 6 , 5
Total outcomes = 18
Possibility =
Answered by
50
Possible outcomes whose sum are odd -
( 1 , 2 )
( 1 , 4 )
( 1 , 6 )
( 2 , 1 )
( 2 , 3 )
( 2 , 5 )
( 3 , 2 )
( 3 , 4 )
( 3 , 6 )
( 4 , 1 )
( 4 , 3 )
( 4 , 5 )
( 5 , 2 )
( 5 , 4 )
( 5 , 6 )
( 6 , 1 )
( 6 , 3 )
( 6 , 5 )
Total outcomes = 18
Similar questions