Math, asked by amitghorai1567, 1 year ago

Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.

Answers

Answered by amitnrw
10

Answer:

P(0) =  25/36

P(1)  = 5/18

p(2)  = 1/36

Step-by-step explanation:

Total Event = 6* 6 = 36

Number of  Sixes can be 0 , 1  & 2

Two sixes only (6 , 6)  - One Event

one six (1 , 6) , (2 , 6) , (3 , 6) , ( 4 , 6) , ( 5 , 6)

          & (6 , 1) , ( 6, 2) , (6 , 3) , (6 , 4) , (6 , 5)

= 10 Events

0 sixes = 36 - 1 - 10 = 25

P(0) =  25/36

P(1) =  10/36  = 5/18

p(2)  = 1/36

Answered by pulakmath007
34

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

Two dice are thrown simultaneously. If X denotes the number of sixes

TO DETERMINE

The expectation of X

CALCULATION

Here two dice are thrown simultaneously

So the total number of possible outcomes = 6× 6 = 36

Now total number of possible outcomes for the event when no six obtain = 36 - 11 = 25

Since the number of event points containing atleast one six are 11 precisely

(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(6,1),(6,2),(6,3),(6,4),(6,5)

Now total number of possible outcomes for the event when one six obtain = 10

Since the event points containing one six are

(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5)

Now total number of possible outcomes for the event when two six obtain = 1

Since the event points containing two six are (6,6)

 \displaystyle \sf{ \: }P(X=0) = Probability \:  of \:  no  \: six =  \frac{25}{36}

 \displaystyle \sf{ \: }P(X=1) = Probability \:  of \:  one  \: six =  \frac{10}{36}

 \displaystyle \sf{ \: }P(X=2) = Probability \:  of \:  two  \: six =  \frac{1}{36}

So the probability distribution is given by

 \sf{ X : } \:  \:  \: \:  \:  \:  \:  \:   \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \: 0 \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \: \: 1 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:  \:  \:  \:  \:  \: 2

  \displaystyle\sf{ P(X ): } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{25}{36}  \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \frac{10}{36}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{36}

Hence the required Expectation

  \sf{\sum \: X \: . \: P(X)}

 =  \sf{0. P(0) + 1. \: P(1) + 2 \:.  P(2) \: }

  = \displaystyle \sf{ \bigg(0 \times  \frac{25}{36} \bigg)  +   \bigg(1 \times  \frac{10}{36} \bigg)  + \bigg(2 \times  \frac{1}{36} \bigg)  \: }

  = \displaystyle \sf{  \frac{12}{36} \: }

  = \displaystyle \sf{  \frac{1}{3} \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Probability of a 10 year flood occurring at least once in the next 5 years is

https://brainly.in/question/23287014

Similar questions