Math, asked by nareshjha224, 11 months ago

two dice are thrown together find the probability of getting different number on both dice​

Answers

Answered by saulat724
0

Answer:

2/36 because 36 is the favourable outcome

Answered by Mihir1001
8

\bold{Answer:}

\huge\boxed{\fcolorbox{red}{white}{5/6}}

................................................................................................................................................................................................

\bold{Step-by-step-explaination:}

................................................................................................................................................................................................

On throwing two dice together, following outcomes can be obtained :

S = [(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),

  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)]

................................................................................................................................................................................................

therefore, n(S) = 36

................................................................................................................................................................................................

let E_1 =  event \: of \: getting \: different \: numbers \: on \: both \: the \: die.

................................................................................................................................................................................................

therefore,

E_1 = [(1,2),(1,3),(1,4),(1,5),(1,6),

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2,1),(2,3),(2,4),(2,5),(2,6),

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (3,1),(3,2),(3,4),(3,5),(3,6),

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (4,1),(4,2),(4,3),(4,5),(4,6),

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (5,1),(5,2),(5,3),(5,4),(5,6),

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (6,1),(6,2),(6,3),(6,4),(6,5).]

................................................................................................................................................................................................

therefore, n(E_1) = 30

................................................................................................................................................................................................

hence, P(E_1) =  \frac{n(E_1)}{n(S)}  =  \frac{30}{36}  =  \frac{5}{6}

................................................................................................................................................................................................

{\fcolorbox{green}{cyan}{your required answer is above ......... keep smiling ….. :)}}

.

.

.

.

\bold{hope.... \: it \: helps.}

and... mark this answer as BRAINLIEST.

and... if u can...... then

<p style="background-color:gold;"><b><i>......<u>..follow me..</u>...... !!</i>!</b></p>

Thanks for reading................................................ :)

\huge{\fcolorbox{red}{orange}{brainliest \: answer}}

<body style="background-color:yellow; font-color:red">  .........<b>………..❤Thank you to all my lovely readers❤............╭∩╮(︶︿︶)╭∩╮..</b>..</body>

<marquee> please answer my questions too… ….. …please¯\_(ツ)_/¯</marquee>

Similar questions