Two dice numbered 1 to 6 are thrown simultaneously. Find the probability of getting the sum as an odd number greater than or equal to 7.
Answers
Step-by-step explanation:
3/6 that is 1/2 is the final answer
Answer:
I am a girl name, Mahin sheikh, student of 8th STD form wardha district , Maharashtra...
Sample space for total number of possible outcomes
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
Total number of outcomes =36
(i)
Favorable outcomes for sum as prime are
(1,1),(1,2),(1,4),(1,6),(2,3),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2),(5,6),(6,1),(6,5)
Number of favorable outcomes =15
Hence, the probability of getting the sum as a prime number = 15/36 = 5/13.
(ii)
Favorable outcomes for total of atleast 10 are
(4,6),(5,5),(5,6),(6,4),(6,5),(6,6)
Number of favorable outcomes =6
Hence, the probability of getting a total of atleast 10 = 6/36 = 1/6.
(iii)
Favorable outcomes for a doublet of even number are
(2,2),(4,4),(6,6)
Number of favorable outcomes =3
Hence, the probability of getting a doublet of even number = 3/36 = 1/13.
(iv)
Favorable outcomes for a multiple of 2 on one dice and a multiple of 3 on the other dice are
(2,3),(2,6),(3,2),(3,4),(3,6),(4,3),(4,6),(6,2),(6,3),(6,4),(6,6)
Number of favorable outcomes =11
Hence, the probability of getting a multiple of 2 on one dice and a multiple of 3 on the other dice = 11/36.
(v)
Favorable outcomes for getting a multiple of 3 as the sum
(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3)(6,6)
Number of favorable outcomes =12
Hence, the probability of getting a multiple of 3 as the sum = 12/36 = 1/3...
this your answer....