Math, asked by ishikaoad52, 5 months ago

Two dices thrown simultaneously find probability on which-on 1st dice prime no. and on 2nd dices divisible by 2 no. will occurs​

Answers

Answered by ItzBrainlyBeast
14

\LARGE\textbf{\underline{\underline{✪\: \: \: Solution :-}}}

  • The Sample Space ( S ) when two dices are thrown simultaneously :-

S = {( 1 , 1 ) , ( 1 , 2 ) , ( 1, 3 ) , ( 1, 4 ) , ( 1 , 5 ) , ( 1 , 6 ) ,( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) , ( 3 ,4 ) , (3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 4 , 1 ) , ( 4 ,2 ) , ( 4 , 3 ) , ( 4 ,4 ) , ( 4 ,5 ) , ( 4 , 6 ) , ( 5 , 1 ) , ( 5 , 2 ) , (.5 , 3 ) , ( 5 ,4 ) , ( 5 , 5 ) , ( 5 , 6 ) , ( 6 , 1 ) , ( 6 , 2 ) , ( 6 , 3 ) , ( 6 , 4 ) , ( 6 , 5 ) , ( 6 , 6 ) }

_______________________________________

n ( S ) = 36 .

  • Let A be the event of getting ' Prime no. ' on 1ˢᵗ dice and ɡettinɡ a ' Number divisible by 2 ' on 2ⁿᵈ :-

( A ) = { ( 2 , 2 ) , ( 2 , 4 ) , ( 2 , 6 ) , ( 3 , 2 ) , ( 3 , 4 ) , ( 3 , 6 ) , ( 5 , 2 ) , ( 5 , 4 ) , ( 5 , 6 ) } .

n ( A ) = 9 .

\large:\: \bigstar\textsf\textcolor{orange}{\: \: \: $ P ( A ) = \cfrac{ n ( A ) }{ n ( S ) } $ }\\\\\\\large: \: \Longrightarrow\textsf{=$ \cfrac{9 }{36 }$}\\\\\\\large: \: \Longrightarrow\textsf{= $ \cfrac{ \cancel 9 }{ \cancel 36}$}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{P ( A ) = $ \cfrac{1}{4}$}}}

Similar questions