Two different dice are thrown simultaneously. Find the probability if getting:
1. sum 7
ii. sum ≤ 3
iii. sum ≤ 10
Answers
Answer:
1) sum 7
{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} =6
2) sum < = 3. = {(1,1),(1,2),(2,1)}= 3
3)sum of < = 10. = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1)(3,2),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),
(6,1),(6,2),(6,3),(6,4) = 26
Answer:
i) 1/6 ii) 1/12 iii) 11/12
Step-by-step explanation:
1)Cases favorable to an even no's are the sum
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
Total no of outcomes =36
i) S= {(1,6), (2,5),(3,4),(4,3),(5,2),(6,1)}
Total no of outcomes = 6
P(sum 7) = 6/36 =1/6 ( ÷ by 6)
P=1/6
ii) S = { (1,1),(1,2),(2,1) }
Total no of outcomes = 3
P(sum less than or equal to 3) = 3/36
P = 1/12 ( ÷ by 3)
iii) S = { (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),
(6,1),(6,2),(6,3),(6,4)}
Total no of outcomes = 33
P(sum less than or equal to 10) = 33/36 ( ÷ by 3)
P = 11/12