Two different dice thrown together. Find the probability of even product
Answers
Answered by
2
Number of favourable outcomes for even product
( 1 , 2 ) ( 1, 4 ) ( 1 , 6 )
( 2 , 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 )
( 3 , 2 ) ( 3 , 4 ) ( 3 , 6 )
( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 )
( 5 , 2 ) ( 5 , 4 ) ( 5 , 6 )
( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 )
P(E) = Number of favorable outcomes
Total number of possible outcomes
= 27 / 36
= 3 / 4.
( 1 , 2 ) ( 1, 4 ) ( 1 , 6 )
( 2 , 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 )
( 3 , 2 ) ( 3 , 4 ) ( 3 , 6 )
( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 )
( 5 , 2 ) ( 5 , 4 ) ( 5 , 6 )
( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 )
P(E) = Number of favorable outcomes
Total number of possible outcomes
= 27 / 36
= 3 / 4.
Answered by
0
Sample space:{(0,0) ........ (6,6)}
Favourable outcomes: { (0, 1-6) ; (1, 246) ; (2, 1-6) ; (3, 246) ; (4, 1-6) ; (5, 246) ; (6, 1-6)}
Total number of outcomes: 36
Probability: 27/36 = 3/4
Similar questions