two different mixture of milk and water have milk and water in ratio 4:7 and 8:3 respectively. in what ratio two mixtures of milk and water should be mixed so that final mixture has equal amount of milk and water?
Answers
Complete step by step solution: In the first mixture of water and milk, we have
Total part in the first mixture =5
Milk is the first mixture =25 part
Water in the first mixture =35 part
In the second mixture of water and milk, we have
Total part in second mixture =10
Milk in the second mixture =310 part
Water in the second mixture =710 part
Now, in the final part, it is written that the ratio of milk to water =4:7
So, milk in the final part =411
As the total in the final part is 11
And water in the final part =711
Therefore if we apply the rule of the allegation which is, when different quantities of different ingredients are mixed together to produce a mixture of a mean value, the ratio of their quantities is inversely proportional to the difference on the cost from the mean value
So, using the rule of the allegation, we get
Milk: water =711:552=7:4
Therefore the answer is 7:4, it this is the ratio of milk and water is the new mixture is which ratio of milk to water is 4:7.
Answer:
answer =5:3
hgiodusoxhcoc