Physics, asked by srushti2386, 8 months ago

Two disc one of density 7.2 g/cm and the other of density 8.9 g/cm are of same mass and thickness. Their
moments of inertia are in the ratio :-

Answers

Answered by padmakamal1234
2

Explanation:

Bro please mark as brainliest it's my humble request to you

Attachments:
Answered by nilesh102
6

{ \bf{ \underline{ \red{ \underline{Question:-}}}}}

Two disc one of density 7.2 g/cm³ and the other of density 8.9 g/cm³ are of same mass and thickness. Their moments of inertia are in the ratio :-

{ \bf{ \underline{ \red{ \underline{Solution:-}}}}}

{According to question}

{ \dagger{ \sf{ \: let \: { \red{ \rho_{1} }}} \: be \: the \: density \: of \: first \: disc}}

{{ \sf{ \: and \: { \red{ \rho_{2} }}} \: be \: the \: density \: of \: second \: disc}}

{ \dagger{ \sf \: { \red{ \rho_{1} }} = 7.2 \:  \: g/cm³}}

{ \dagger{ \sf \: { \red{ \rho_{2} }} = 8.9 \:  \: g/cm³}}

{ \dagger{ \sf{ \: let \: { \red{ m_{1}, \: t_1}}} \: and \:  {{ \red{ m_{2} , \: t_1}}}}{ \sf{\: be \: the \: mass \: and \: thikness \: }}}

{{ \sf{ \: of \: first \: disc \: and \:second  \:  disc \: repectively.}}}

According to given mass & thickness are same of both disc

{ \bf{ \dashrightarrow{ \red{ m_{1} = \red{ m_{2}}}}}}{ \sf{ \: and}}{ \bf{ {  \:  \: \red{ t_{1} = \red{ t_{2}}}}} \:  \:  \:  \: .....(1)}

Hence,

We know formula of density is

{ \sf{ \dashrightarrow{ \huge{ \purple{ \rho} =  \frac{m}{v} }}}}

where,

—› m = mass & v = volume

Hence,

{ \sf{ \dashrightarrow{ \huge{ m = \purple{ \rho}  \times  v }}} \:  \: ....(2)}

from ( 1 )

{ \sf{ \huge{ \dashrightarrow{ m _{1} = m _{2} }}}}

from ( 2 )

{ \bf{  { \dashrightarrow{ { \rho}_{1}  \times  v _{1} = { \rho}_{2}  \times  v _{2}  }}}}

we know volume of disc = πr²h but we take πr²t

where t is thickness of disc

—› volume of disc = πr²t

Now,

{ \bf{  { \dashrightarrow{ { \rho}_{1} \times  \pi  \times  {r}^{ \gray2} _{1}   \times {t} _{1} = {{ \rho}_{2} \times  \pi  \times  {r}^{ \gray2} _{2}   \times {t} _{2}}}}}}

From ( 1 )

{ \bf{  { \dashrightarrow{ { \rho}_{1} \times  {r}^{ \gray2} _{1}    = {{ \rho}_{2}   \times  {r}^{ \gray2} _{2}   }}}}}

Now,

{ \bf{ \huge  { \dashrightarrow{  \frac{{r}^{ \gray2} _{1}}{{r}^{ \gray2} _{2}}        = {    \frac{{ \rho}_{2}  }{{ \rho}_{1}  }  }}}}}

Now we use formula of moment of inertia of disc .

{ \bf{ \green{ \dashrightarrow{ \purple{ I_{(disc)} = \frac{1}{2}m {r}^{2}  }}}}}

From ( 1 )

{ \bf{ \green{ \dashrightarrow{ \purple{ I_{(disc)}  \:  { \gray{\alpha}  } \: \:  {r}^{2}  }}}}}

Hence,

{ \bf{ \huge{ \green{ \dashrightarrow{ \purple{  \frac{I_{(disc \: 1)}  }{I_{(disc \: 2)}  } \:   =   \: \:  \frac{{r}^{ \gray2} _{1}}{{r}^{ \gray2} _{2}}   }}}}}}

We know

{ \bf{ \huge  { \dashrightarrow{  \frac{{r}^{ \gray2} _{1}}{{r}^{ \gray2} _{2}}        = {    \frac{{ \rho}_{2}  }{{ \rho}_{1}  }  }}}}}

Hence,

—› I (disc 1 ) : I (disc 2) = 8.9 : 7.2

Hence ratio of moment of inertia of disc's are 8.9 : 7.2

i hope it helps you.

Similar questions