Math, asked by 9162095580sitakumari, 6 months ago

Two equal side of a triangle are 5 m less than twice
the 3 side. If the perimeter of the triangle is 55 m
find the length of its side ?​

Answers

Answered by Anonymous
16

\large{\dag\underline{\pink{\frak{Given:}}}\dag} \\ \\

  • \red{\textsf{Two equal sides of Triangle are 5m less than 3side.}}\\
  • \blue{\textsf{Perimeter of Triangle is 55m}}\\

\large{\dag\underline{\pink{\frak{Find:}}}\dag} \\ \\

  • \purple{\textsf{Length of all sides.}}\\

\large{\dag\underline{\pink{\frak{Solution:}}}\dag} \\ \\

Let, the length of the third side be 'x' m

According To Question:-

Other two equal sides are 5m less than twice the 3rd side.

 \sf\implies (2x - 5)m \\

Now,

 \sf \mapsto Perimeter \: of \: triangle = sum \: of \: all \: sides \\  \\

 \sf where  \small{\begin{cases} \sf  Perimeter = 55m \\ \sf {3}^{rd} side = x \:m \\  \sf  {1}^{st} side = {2}^{nd}side = (2x - 5)m \end{cases}}

Substituting these values:-

 \sf \dashrightarrow Perimeter = {1}^{st} side +  {2}^{nd}side +  {3}^{rd} side \\  \\

 \sf \dashrightarrow 55= 2x - 5 +  2x - 5 + x \\  \\

 \sf \dashrightarrow 55= 5x - 5 - 5\\  \\

 \sf \dashrightarrow 55= 5x - 10\\  \\

 \sf \dashrightarrow 55 +10= 5x\\  \\

 \sf \dashrightarrow 65= 5x\\  \\

 \sf \dashrightarrow  \dfrac{65}{5}= x\\  \\

 \sf \dashrightarrow 13m= x\\  \\

\underline{\boxed{ \begin{gathered}\therefore\sf F1^{st} side=2x-5  \\  \sf = 2 \times 13  - 5 \\ \sf  = 26 - 5 \\\sf  = 21m\end{gathered}}}

\underline{\boxed{ \begin{gathered}\therefore\sf 2^{nd} side=2x-5  \\  \sf = 2 \times 13  - 5 \\ \sf  = 26 - 5 \\\sf  = 21m\end{gathered}}}

\underline{\boxed{ \begin{gathered}\therefore\sf 3^{rd} side=x = 13m\end{gathered}}}

Answered by Anonymous
1

Answer:

Let the third side be x m.

Then the two equal sides are of length (2x−5) m.

Perimeter of triangle = 55 m.

⟹x+(2x−5)+(2x−5)=55

⟹5x−10=55

⟹x=13

Hence, the length of the triangle's sides are 13m, 21m and 21m.

Similar questions