Two equal sides of a triangle are each 5 meters less than twice the third side. If the
perimeter of the triangle is 55 meters, find the length of its sides?
1190 dhe anales?
Answers
Answered by
0
Answer:
Let the 3rd, unequal side be x.
1st equal side = 2x-5
2nd equal side = 2x-5
Perimeter = Sum of all sides
55 = 2(2x-5) + x
55 = 4x - 10 + x
65 = 5x
x = 13
Thus, the length of the sides are 13m, 21m, and 21m.
Mark my answer as the brainliest please!
Answered by
108
★ᏀᏆᏙᎬΝ:-
Two equal sides of triangle are 5 meters (each) less than twice of third side.
Perimeter of ∆ = 55 meters.
★Ƭ០ ⨏ɨ⩎ᖱ:-
The length of the third side.
★ՏϴᏞႮͲᏆϴΝ:-
Let the third side be x.
Then the two equal sides will be (2x-5) each.
Using the formula,
____________________
Length of first side
= 2x - 5
= 2(13) - 5
= 26-5
= 21m
_____________________
Length of second side
Length of second side was equal to the first side so
Length of second side = 21m
_____________________________
Length of third side
Length of third side was x.
And we got the value of x as 13
So length of third side is 13m.
Hope it helps
Similar questions