Math, asked by Anonymous, 4 days ago

Two equal sides of an isosceles triangle are 10 cm and the perimeter is 28 cm, then the area of the triangle is​

Answers

Answered by suhail2070
3

Answer:

8 \sqrt{21}  \:  \:  \:  {cm}^{2} .

Step-by-step explanation:

s = 14 \: cm. \\  \\ x = 10 \: cm \\  \\ y = 10 \: cm \\  \\ z = 28 - 1 0- 10 \\  \\ z = 28 - 20 \\  \\ z = 8 \: cm. \\  \\ area \: of \: triangle \:  =  \:  \sqrt{(s)(s - a)(s - b)(s - c)}  \\  \\  =  \sqrt{14(14 - 10)(14- 10)(14- 8)}  \\  \\  =  \sqrt{14 \times 4 \times 4 \times6 } \\  \\  =  \sqrt{7 \times 2 \times  {4}^{2} \times 3 \times 2 }  \\  \\  = 4 \times 2 \sqrt{7 \times 3}  \\  \\  = 8 \sqrt{21}  \:  \:  \:  {cm}^{2} .

Answered by Anonymous
16

Step-by-step explanation:

Given

  • The perimeter of triangle = 28 cm.
  • Two equal side of an Isosceles triangle is 10 cm.

To Find :

The area of triangle

Solution :

{\implies{\sf{Perimeter \: of \: {Triangle} = a + b + c}}} \\ {\implies{\sf{28= 10 + 10 +c}}} \\ {\implies{\sf{28= 20 + c}}} \\{\implies{\sf{c = 28 - 20}}} \\ {\implies{\sf{\red{c =8 \: cm}}}}

Hence, the third angle of triangle is 8 cm.

Now , area of the triangle

\begin{gathered}\begin{gathered} \small {\underline{\underline{\sf{\purple{Here :}}}}}\begin{cases} \sf{a = 10 \: cm} \\ \sf{b = 10 \: cm} \\ \sf{c = 8\: cm} \end{cases} \end{gathered}\end{gathered}

Now , we have to find semi perimeter

\implies{\sf{Semi \: Perimeter = \dfrac{a + b + c}{2}}}

\implies{\sf{Semi \: Perimeter = \dfrac{10 + 10 + 8}{2}}}

 \implies{\sf{Semi \: Perimeter = \dfrac{28}{2}}}

\implies{\sf{Semi \: Perimeter = \cancel{\dfrac{28}{2}}}}

\implies{\sf{ \purple{Semi \: Perimeter = 14 \: cm}}}

Hence, the semi perimeter of triangle is 14 cm.

Now, the area of tiangle

{\rightarrow{\sf{Area \: of \: {Triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}{ \rightarrow{\sf{Area \: of \: {Triangle} = \sqrt{14(14 - 10)(14 - 10)(14 - 8)}}}}{\rightarrow{\sf{Area \: of \: {Triangle} = \sqrt{14(4)(4)(6)}}}}{ \rightarrow{\sf{Area \: of \: {Triangle} = \sqrt{14 \times 4 \times 4 \times 6}}}}\\{\rightarrow{\sf{Area \: of \: {Triangle} = \sqrt{1344}}}}{\rightarrow{\sf{\purple{Area \: of \: {Triangle}  =  36.66 \: {cm}^{2}}}}}

Hence, the area of triangle is 36.66 cm².

Similar questions