Math, asked by arunkumararumugam98, 1 year ago

two equal sum of money were lent at simple interest at 11% p.a.for 3 1/2 years and 4 1/2 years respectively. if the difference in interest two period was ₹41250,then each sum was​

Answers

Answered by Anonymous
170

AnswEr :

Let the Equal Sum of money be Rs. x

\bold{First \: Part} \begin{cases} \sf{Principal=Rs. x} \\ \sf{Rate=11\% \: p.a.}  \\  \sf{Time=4 \dfrac{1}{2} \:  =  4.5 \: Yr. }\end{cases}

\bold{Second \: Part} \begin{cases} \sf{Principal=Rs. x} \\ \sf{Rate=11\% \: p.a.} \\  \sf{Time=3 \dfrac{1}{2} \:  =3.5 \: Yr. }\end{cases}

_________________________________

\longrightarrow \large \sf{Difference = SI_1 - SI_2}

 \longrightarrow \sf{Diff. =  \dfrac{PRT_1}{100} - \dfrac{PRT_2}{100}}

 \longrightarrow \sf{41250 =  \dfrac{x \times 11 \times 4.5}{100} - \dfrac{x \times 11 \times 3.5}{100}}

 \longrightarrow \sf{41250 = \dfrac{49.5x}{100}  -  \dfrac{38.5x}{100} }

 \longrightarrow \sf{41250 = \dfrac{(49.5x - 38.5x)}{100}}

 \longrightarrow \sf{ \cancel{41250} = \dfrac{ \cancel{11}x}{100}}

 \longrightarrow \sf{3750 = \dfrac{x}{100}}

 \longrightarrow \sf{3750 \times 100 = x}

\longrightarrow \large \sf{x =Rs. 375000}

 \therefore Equal Sum is Rs. 3,75,000.

Answered by dkjr96
3

Please mark me as the bran list answer

Similar questions