Physics, asked by MeetVsV, 8 months ago

Two equal velocities have a resultant equal 3/2 times the value of either velocity. Find the angles between them.

Answers

Answered by yagnasrinadupuru
1

Given:</p><p></p><p>v= frequency= 980kHz</p><p></p><p>Need to find:</p><p></p><p>The wavelength= \lambdaλ =?</p><p></p><p>━━━━━━━━━━━━━━━━━━━</p><p></p><p>Solution:</p><p></p><p>980 kHz</p><p></p><p>=980 ×1000 Hz</p><p></p><p>C= 3× 10^{8}3×108</p><p></p><p>Now we know:</p><p></p><p>\red{\bold{C = \nu \: \lambda \: }}C=νλ</p><p></p><p>Substituting the values:</p><p></p><p>3 \times {10}^{8} = 980 \times 1000 \: \times \lambda3×108=980×1000×λ</p><p></p><p>\implies \: \lambda \: = \dfrac{3 \times {10}^{8} }{980 \times 1000}⟹λ=980×10003×108</p><p></p><p>\implies \lambda = \dfrac{3 \times {10}^{8 - 3} }{980} m⟹λ=9803×108−3m</p><p></p><p>\implies \: \lambda = \dfrac{3 \times {10}^{5} }{980} m⟹λ=9803×105m</p><p></p><p>\implies \: \lambda = 0.00306 \times {10}^{5} m⟹λ=0.00306×105m</p><p></p><p>\implies \: \lambda = 3.06 \times {10}^{2} m⟹λ=3.06×102m</p><p></p><p>\red{\boxed{ \therefore\: \lambda \: = 306 m}}∴λ=306m</p><p></p><p>

Answered by rathorrk5818
0

Answer:

This is your answer please mark me as the brainliest

Attachments:
Similar questions