Math, asked by tansyjena7753, 2 months ago

Two events A and B are independent, if P(A)=3/5 and P(A∩B)=4/9 , then the value of P(B) is

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{P(A) =\dfrac{3}{5}  } \\ &\sf{P(A \:  \cap \: B) = \dfrac{4}{9} } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{P(B)}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given that

\rm :\implies\:P(A) = \dfrac{3}{5}

and

\rm :\implies\:P(A \:  \cap \: B) = \dfrac{4}{9}

Since,

  • A and B are independent events.

 \boxed{ \rm :\implies\:\red{ \tt \: P(A \:  \cap \: B) = P(A) \times P(B)}}

\rm :\implies\:\dfrac{4}{9}  = \dfrac{3}{5}  \times P(B)

\rm :\implies\:P(B) = \dfrac{20}{27}

Similar questions