Physics, asked by AdorableMe, 8 months ago

Two fixed points A(-2, 3) and B(5, 3) are given. Find the equation of locus of a moving point P such that area of triangle PAB is 20 sq units. *No Spam* ✖✖

Answers

Answered by Rohit18Bhadauria
59

Given:

Two fixed points-

A(-2, 3) and B(5,3)

To Find:

Equation of locus of given moving point P  such that area of triangle PAB is 20 sq units

Solution:

We know that,

  • For a triangle having coordinates of vertices as (x₁,y₁), (x₂,y₂) and (x₃,y₃)

\pink{\underline{\boxed{\sf{Area\:of\:\triangle=\Bigg|\dfrac{1}{2}\Big(x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})\Big)\Bigg|}}}}

  • If |x|= c, then x= ±c

━━━━━━━━━━━━━━━━━━━━━

Let the coordinates of movable point P be (h,k) and the area of triangle PAB be Δ

Now, in triangle PAB

Here,

P(h,k)⟼ (x₁,y₁)

A(-2,3)⟼ (x₂,y₂)

B(5,3)⟼ (x₃,y₃)

So,

\longrightarrow\rm{\triangle=\dfrac{1}{2}\Bigg|\Big(h(3-3)+(-2)(3-k)+5(k-3)\Big)\Bigg|}

\longrightarrow\rm{20=\dfrac{1}{2}\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|}

\longrightarrow\rm{\dfrac{1}{2}\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|=20}

\longrightarrow\rm{\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|=20\times2}

\longrightarrow\rm{\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|=40}

\longrightarrow\rm{\Bigg|-6+2k+5k-15\Bigg|=40}

\longrightarrow\rm{\Bigg|7k-21\Bigg|=40}

\longrightarrow\rm{7k-21=\pm40}

On substituting (h,k) with (x,y), we get

\longrightarrow\rm{7y-21=\pm40}

━━━━━━━━━━━━━━━━━━━━━

Now, we have to consider two cases

Case 1:- When 7y-21=40

\longrightarrow\rm{7y-21=40}

\longrightarrow\rm{7y=40+21}

\longrightarrow\rm{7y=61}

\longrightarrow\rm\green{y=\dfrac{61}{7}}

Case 2:- When 7y-21= -40

\longrightarrow\rm{7y-21=-40}

\longrightarrow\rm{7y=-40+21}

\longrightarrow\rm{7y=-19}

\longrightarrow\rm\green{y=\dfrac{-19}{7}}

Hence, the locus of moving point P is y=61/7 and y= -19/7.

Answered by XxItsDivYanShuxX
8

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Question:↓}}}}}}}

Two fixed points A(-2, 3) and B(5, 3) are given. Find the equation of locus of a moving point P such that area of triangle PAB is 20 sq units.

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Given:↓}}}}}}}

Two fixed points-

A(-2, 3) and B(5,3)

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{To\: Find:↓}}}}}}}

Equation of locus of given moving point P such that area of triangle PAB is 20 sq units

\LARGE{\red{\boxed{\purple{\underline{\orange{\mathtt{Solution:↓}}}}}}}

We know that,

For a triangle having coordinates of vertices as (x₁,y₁), (x₂,y₂) and (x₃,y₃)

\pink{\underline{\boxed{\sf{Area\:of\:\triangle=\Bigg|\dfrac{1}{2}\Big(x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})\Big)\Bigg|}}}}

Area of △=

If |x|= c, then x= ±c

━━━━━━━━━━━━━━━━━━━━━

Let the coordinates of movable point P be (h,k) and the area of triangle PAB be Δ

Now, in triangle PAB

Here,

P(h,k)⟼ (x₁,y₁)

A(-2,3)⟼ (x₂,y₂)

B(5,3)⟼ (x₃,y₃)

So,

\longrightarrow\rm{\triangle=\dfrac{1}{2}\Bigg|\Big(h(3-3)+(-2)(3-k)+5(k-3)\Big)\Bigg|}⟶△=

\longrightarrow\rm{20=\dfrac{1}{2}\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|}⟶20=

\longrightarrow\rm{\dfrac{1}{2}\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|=20}⟶

\longrightarrow\rm{\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|=20\times2}⟶

\longrightarrow\rm{\Bigg|\Big(h(0)-2(3-k)+5(k-3)\Big)\Bigg|=40}⟶

\longrightarrow\rm{\Bigg|-6+2k+5k-15\Bigg|=40}⟶

\longrightarrow\rm{\Bigg|7k-21\Bigg|=40}⟶

\longrightarrow\rm{7k-21=\pm40}⟶7k−21=±40

On substituting (h,k) with (x,y), we get

\longrightarrow\rm{7y-21=\pm40}⟶7y−21=±40

━━━━━━━━━━━━━━━━━━━━━

Now, we have to consider two cases

Case 1:-

When 7y-21=40

\longrightarrow\rm{7y-21=40}⟶7y−21=40

\longrightarrow\rm{7y=40+21}⟶7y=40+21

\longrightarrow\rm{7y=61}⟶7y=61

\longrightarrow\rm\green{y=\dfrac{61}{7}}

Case 2:-

When 7y-21= -40

\longrightarrow\rm{7y-21=-40}⟶7y−21=−40

\longrightarrow\rm{7y=-40+21}⟶7y=−40+21

\longrightarrow\rm{7y=-19}⟶7y=−19

\longrightarrow\rm\green{y=\dfrac{-19}{7}}

Hence, the locus of moving point P is y=61/7 and y= -19/7.

Similar questions