Physics, asked by anandnandan808, 6 months ago


Two forces 20N and 40N act simultaneously at an
angle 45° to each other. Find the magnitude and
directions of their resultant?
olution

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
42

Given

  • Force₁ = 20 N
  • Force₂ = 40 N
  • They are inclined at an angle of 45°

To Find

  • Magnitude and direction of their resultant

Solution

Resultant = √{A²+B²+2AB cosθ}

Resultant :

→ Resultant = √{A²+B²+2AB cosθ}

  • A = 20 N
  • B = 40 N
  • θ = 45°

→ R = √20² + 40² + 2(20)(40)

→ R = √400 + 1600 + 1600

→ R = √3600

→ R = 60 N

Direction

→ cos ω = 40/60

→ cos ω = 0.67

ω = cos⁻¹ 0.67

∴ The magnitude and the direction of their resultant is cos⁻¹ 0.67

Answered by tarracharan
6

Answer :-

• Magnitude of resultant (R) = \boxed{\tt{\red{55.96 \:N}}}

• Direction of resultant (ϕ) = \boxed{\tt{\red{30.4°}}}

Given :-

• Force (A) = 20N

• Force (B) = 40N

• Angle (θ) = 45°

To find :-

• Magnitude and direction of resultant

Formula used :-

\boxed{\sf{R=\sqrt{A²+B²+2ABcosθ}}}

\boxed{\sf{tanϕ = \dfrac{Bsinθ}{A + Bcosθ}}}

Solution :-

\sf{➪\:R=\sqrt{A²+B²+2ABcosθ}}

\sf{➪\:R=\sqrt{(20)²+(40)²+2(20)(40)cos45°}}

\sf{➪\:R=\sqrt{2000+1600\times \dfrac{1}{\sqrt{2}}}}

\sf{➪\:R=\sqrt{2000+800\times \sqrt{2}}}

\sf{➪\:R=\sqrt{3131} = } \bold{\red{55.96 \:N}}

\:

\sf{➪\:tanϕ = \dfrac{Bsinθ}{A + Bcosθ}}

\sf{➪\:tanϕ = \dfrac{40sin45°}{20 + 40cos45°}}

\sf{➪\:tanϕ = \dfrac{\dfrac{40}{\cancel{\sqrt{2}}}}{\dfrac{20\sqrt{2} + 40}{\cancel{\sqrt{2}}}}}

\sf{➪\:tanϕ = \dfrac{2}{\sqrt{2} +2}}

\sf{➪\:ϕ = tan^{-1} (0.58)}

\sf{➪\:ϕ = } \sf{\red{30.4°}}

Use this site for checking the answer:

https://www.easycalculation.com/physics/classical-physics/resultant-vector.php

Attachments:
Similar questions