Physics, asked by gudduoraon6579, 9 months ago

Two forces acting on a particle in opposite directions have the resultant of 10N. If they act at right angles to each other, the resultant it 60N. Fing the 2 forces.

Answers

Answered by Ekaro
15

\large{\bf{\gray{\underline{\underline{\orange{Given:}}}}}}

Case : 1

Angle b/w two force vectors = 180°

Resultant force = 10N

Case : 2

Angle b/w two force vectors = 90°

Resultant force = 60N

\large{\bf{\gray{\underline{\underline{\green{To\:Find:}}}}}}

We have to find magnitude of forces.

\large{\bf{\gray{\underline{\underline{\pink{Solution:}}}}}}

◈ By triangle law or parallelogram law of vector addition, the magnitude of resultant of resultant R at two vectors P and Q inclined to each other at angle θ, is given by

\bigstar\:\underline{\boxed{\bf{\red{R=\sqrt{P^2+Q^2+2PQ\cos\theta}}}}}

Case : 1

:\implies\sf\:10=\sqrt{{F_1}^2+{F_2}^2+2F_1F_2\cos180\degree}

:\implies\sf\:10=\sqrt{{F_1}^2+{F_2}^2-2F_1F_2}

:\implies\sf\:10=\sqrt{(F_1-F_2)^2}

:\implies\bf\:F_1-F_2=10\:\longrightarrow\:(I)

Case : 2

:\implies\sf\:60=\sqrt{{F_1}^2+{F_2}^2+2F_1F_2\cos60\degree}

:\implies\sf\:60=\sqrt{{F_1}^2+{F_2}^2+2F_1F_2}

:\implies\sf\:10=\sqrt{(F_1+F_2)^2}

:\implies\bf\:F_1+F_2=60\:\longrightarrow\:(II)

By solving both equations, we get

  • \bf{F_1=35N}
  • \bf{F_2=25N}
Similar questions