Physics, asked by jk2523761, 9 months ago

two forces are in the ratio √5:√7 acting at angle of 2π have their resultant equal to 1453 N. Find the two forces​

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{F_{1}=\frac{1453\sqrt{5}}{\sqrt{5}+\sqrt{7}}\:N}}}\\

\green{\tt{\therefore{F_{2}=\frac{1453\sqrt{7}}{\sqrt{5}+\sqrt{7}}\:N}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Ratio \: of \: forces =  \sqrt{5}  : \sqrt{7} \\  \\  \tt: \implies Angle \: between \: vectors = 2\pi \\  \\  \tt: \implies resultant \: vector =  1453 \: N  \\  \\  \red{\underline \bold{To \: Find:}}  \\  \tt:  \implies forces =?

• According to given question :

 \tt \circ \:  \frac{ F_{1} }{ F_{2}}  =  \frac{ \sqrt{5} }{ \sqrt{7} } \\  \\  \tt:\implies  \theta = 2\pi \\  \\  \tt \circ \: Angle \: between \: two \: vector \: is \: 2\pi \: it \: means \\  \\ \tt   \:  \:  \:   that \:both \: vector \: acting \: in \: same \: direction   \\  \\  \bold{As \: we \: know \: that} \\   \tt:  \implies  F_{1} +  F_{2} = 1453\:\:\:\:(Same\:direction) \\  \\ \tt:  \implies  \sqrt{5}x +   \sqrt{7}x = 1453 \\  \\ \tt:  \implies x( \sqrt{5}  +  \sqrt{7} ) = 1453 \\  \\  \green{\tt:  \implies x =  \frac{1453}{ \sqrt{5}  +  \sqrt{7} } } \\  \\   \green{\tt \therefore F_{1} =  \sqrt{5}  \times  \frac{1453}{ \sqrt{5}  +  \sqrt{7} } =  \frac{1453 \sqrt{5} }{ \sqrt{5}  +  \sqrt{7} }\:N } \\  \\ \green{\tt \therefore F_{2} =  \sqrt{7}  \times  \frac{1453}{ \sqrt{5}  +  \sqrt{7} } =  \frac{1453 \sqrt{7} }{ \sqrt{5}  +  \sqrt{7} }\:N}

Similar questions