Physics, asked by sanwadrashinkar8888, 4 months ago

Two forces F = 3î – 2j+ 4k N and F = î– 3j+k
N act on a particle to cause a displacement of
î+ 3j+6k) m. Determine the total work done.​

Answers

Answered by Anonymous
11

\underline{\underline{\sf \qquad Answer :\qquad}}  \\

As we know that, work done by the constant force (F) on particle which undergoes displacement (s) is given by :

\bullet \:\: \underline{ \boxed{ \textsf{\textbf{Work done =$\overrightarrow{\text F}$.$ \overrightarrow{\text s}$ = Fs cos $\theta $ }}}} \\  \\

Now,

\displaystyle{ \sf:\implies s =  \hat{i} + 3 \hat{j} + 6\hat{k}} \qquad\bigg\lgroup \textsf{\textbf{Given}} \bigg\rgroup\\  \\  \\

\displaystyle{ \sf:\implies F_{1} = 3 \hat{i} - 2 \hat{j} + 4\hat{k}} \\  \\  \\

\displaystyle{ \sf:\implies F_{2} = \hat{i} - 3 \hat{j} + \hat{k}} \\  \\  \\

\dag \: \frak{\underline{Now, let's \:  calculate \:  the \:  total  \: Force :}} \\

\displaystyle{ \sf:\implies F = F_1 + F_2}\\  \\  \\

\displaystyle{ \sf:\implies F =3 \hat{i} - 2 \hat{j} + 4\hat{k}  +\hat{i} - 3 \hat{j} + \hat{k}} \\  \\  \\

\displaystyle{ \sf:\implies F  = 4 \hat{i} - 5 \hat{j} + 5\hat{k}}\\  \\  \\

\dag \: \frak{\underline{Now, substitue \: the \:  given \:  values \:in above \:  formula \:  of \:  work \:  done :}} \\

\dashrightarrow\:\:  \sf Work \:  done = Fs \cos(\theta) \\  \\  \\

\dashrightarrow\:\:  \sf Work \:  done = (4 \hat{i} - 5 \hat{j} + 5\hat{k}).(\hat{i} + 3 \hat{j} + 6\hat{k}) \cos( {0}^{  \circ} ) \\  \\  \\

\dashrightarrow\:\:  \sf Work \:  done = 4  - 15   + 30 \\  \\  \\

\dashrightarrow\:\:  \sf Work \:  done =  - 11  + 30 \\  \\  \\

\dashrightarrow\:\:  \underline{ \boxed{ \sf Work \:  done =  19 \:  J}}\\  \\  \\


TheValkyrie: Amazing!
Anonymous: Thanks dibba .-.
Cosmique: Amazeballs :3 Thanks for the answer
Anonymous: Thanks anuuuu <( ̄︶ ̄)>
Ekaro: Brilliant! (^∇^)ノ♪
Anonymous: Thanks wizi .-.
Answered by ItzMarvels
25

___________________

♧Question♧

  • Two forces F = 3î – 2j+ 4k N and F = î– 3j+k N act on a particle to cause a displacement of î+ 3j+6 km. Determine the total work done.

♧Answer♧

Given data:-

  • ➠F1 = 3î – 2j+ 4k N
  • ➠F2 = î– 3j+k
  • ➠Displacement = î+ 3j+6 km

To find:-

  • ➠Work done = ?

Solution:-

☆Force and displacement are given by:

\:\: \red{ \boxed{ \textsf{\textbf{Work done =$\overrightarrow{\text F}$.$ \overrightarrow{\text s}$ = Fs cos $\theta $ }}}} \\  \\

Now,

\displaystyle{ \sf:\dashrightarrow s =  \hat{i} + 3 \hat{j} + 6\hat{k}} \\  \\  \\{ \sf:\dashrightarrow F_{1} = 3 \hat{i} - 2 \hat{j} + 4\hat{k}} \\  \\  \\ { \sf:\dashrightarrow F_{2} = \hat{i} - 3 \hat{j} + \hat{k}} \\  \\  \\

☆First we have to find the value of F.

\displaystyle{ \sf:\dashrightarrow{ F = F_1 + F_2}}\\  \\  \\ { \sf:\dashrightarrow F =3 \hat{i} - 2 \hat{j} + 4\hat{k}  +\hat{i} - 3 \hat{j} + \hat{k}} \\  \\  \\ { \sf:\dashrightarrow F  = 4 \hat{i} - 5 \hat{j} + 5\hat{k}}\\  \\  \\

☆Now put the values in the formula,

\dashrightarrow\:\:  \frak{Work \:  done = Fs \cos(\theta)} \\  \\  \\ \dashrightarrow\:\:  \frak {Work \:  done = (4 \hat{i} - 5 \hat{j} + 5\hat{k}).(\hat{i} + 3 \hat{j} + 6\hat{k}) \cos( {0}^{  \circ} )} \\  \\  \\ \dashrightarrow\:\:  \frak{ Work \:  done = 4  - 15   + 30} \\  \\  \\ \dashrightarrow\:\:  \frak {Work \:  done =  - 11  + 30} \\  \\  \\ \dashrightarrow\:\:  \underline{ \boxed{\red{ \frak {Work \:  done =  19 \:  J}}}}\\  \\  \\

__________________

Similar questions