Physics, asked by mass566, 1 year ago

Two forces F1=5i+10j-20k and F2=10i-5j-15k act on a single point. The angle between F1 and F2 is nearly: a. 30° b. 45° c. 60° d. 90°

Answers

Answered by rishu6845
78

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by parulsehgal06
3

Answer:

The angle formed by the two forces is nearly equal to 45°.

Explanation:

Angle between two forces:

Given two forces are F₁=5i+10j-20k and F₂=10i-5j-15k

Angle between the two forces is given by

        cosθ= (F₁.F₂)/|F₁||F₂|

   where F₁.F₂ is the dot product of the two forces F₁ and F₂.

         F₁.F₂ = (5i+10j-20k).(10i-5j-15k)

                 = 50-50+300

                 = 300

            |F₁| = \sqrt{5^{2}+10^{2}+(-20)^{2}  }

                  = \sqrt{25+100+400}

                  = \sqrt{525}

          |F₂| = \sqrt{10^{2}+(-5)^{2}+(-15)^{2}  }

                = \sqrt{100+25+225}

                = \sqrt{350}

       Now substitute all the values in the formula

           cosθ = (F₁.F₂)/|F₁||F₂|

                    = 300/(\sqrt{525}\sqrt{350})

                    = 300/(5\sqrt{21}5\sqrt{14})

                    = 12/\sqrt{(21)(14)}

                    = 12/7\sqrt{6}

           cosθ = 0.699  

                 θ = cos⁻¹(0.699)

                 θ ≅ cos⁻¹(cos45°)

                θ ≅ 45°

Hence the angle formed by the two forces is nearly equal to 45°.

Know more about Limiting force:

https://brainly.in/question/13345043?referrer=searchResults

Similar questions