Math, asked by sofiamerlin17, 1 month ago

Two forces of magnitudes k cos A and k cos B act along CA, CB of a triangle ABC . Prove that their resultant is k sin C. (B.Sc.86 Calicut; B.Sc. 79, 8 M.K.U.) [Hint:- Use the result that in a triangle cos^ 2 A+cos^ 2 B+cos^ 2; C=1-2 cos A cos B cos C]​

Answers

Answered by divyasingh016787
0

Answer:

Answer:

If x=cos1cos2cos3..cos89 and y=cos2cos6cos10…cos86, then what is the nearest integer to 2/7log (base2) (y/x)?

Data transfer seems difficult? Make it a seamless task!

Given,

x=cos(1)cos(2)cos(3)…cos(87)cos(88)cos(89)

and y=cos(2)cos(6)cos(10)…cos(82)cos(86)

As we know,

cos(A)cos(B)=cos(A+B)+cos(A−B)2

So,

cos(1)cos(89)=cos(89+1)+cos(89−1)2=cos(90)+cos(88)2

As, cos(90)=0

cos(1)cos(89)=cos(88)2

Similarly,

cos(2)cos(88)=cos(88+2)+cos(88−2)2=cos(86)2

and so on.

So,

x=cos(1)cos(2)cos(3)…cos(87)cos(88)cos(89)

=cos(88)cos(86)cos(84)…cos(4)cos(2)cos(45)244

=cos(88)cos(86)cos(84)…cos(4)cos(2)2442–√

[As cos(45)=12√ ]

Now,

cos(2)cos(88)=cos(86)2 [Similar analogy as above.]

So,

x=cos(88)cos(86)cos(84)…cos(4)cos(2)2442–√

=cos(86)cos(82)cos(78)…cos(6)cos(2)2662–√

=y2662–√

=y266+12

=y21332

So,

2log2(yx)7

=2log2(21332)7

=2×133)7×2

=19

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

Two forces of magnitudes k cos A and k cos B act along CA, CB of a triangle ABC.

Let resultant be R which makes an angle x with CA.

From figure,

R, k cosA and k cosB are in equilibrium.

By Lami's Theorem,

\rm :\longmapsto\:\dfrac{k \: cosA}{sin(\pi - (C - x))}  = \dfrac{k \: cosB}{sin(\pi - x)}  = \dfrac{R}{sinC}

\rm :\longmapsto\:\dfrac{k \: cosA}{sin(C - x)}  = \dfrac{k \: cosB}{sinx}  = \dfrac{R}{sinC}  -  -  - (1)

Taking first and second member, we get

\rm :\longmapsto\:\dfrac{k \: cosA}{sin(C - x)}  = \dfrac{k \: cosB}{sinx}

\rm :\longmapsto\:\dfrac{\: cosA}{sin(C - x)}  = \dfrac{\: cosB}{sinx}

\rm :\longmapsto\:cosAsinx = cosBsin(C - x)

\rm :\longmapsto\:cosAsinx = cosB[sinCcosx - sinxcosC]

\rm :\longmapsto\:cosAsinx = cosBsinCcosx - sinxcosCcosB

\rm :\longmapsto\:cosAsinx  + sinxcosCcosB = cosBsinCcosx

\rm :\longmapsto\:sinx(cosA  + cosCcosB) = cosBsinCcosx

\rm :\longmapsto\:cosA  + cosCcosB = cosBsinC \times \dfrac{cosx}{sinx}

\rm :\longmapsto\:cos[\pi - (B + C)]  + cosCcosB = cosBsinCcotx

\rm :\longmapsto\: - cos(B + C)  + cosCcosB = cosBsinCcotx

\rm :\longmapsto\: - [cosBcosC - sinBsinC] + cosCcosB = cosBsinCcotx

\rm :\longmapsto\: - cosBcosC +  sinBsinC + cosCcosB = cosBsinCcotx

\rm :\longmapsto\:   sinBsinC  = cosBsinCcotx

\rm :\longmapsto\:   sinB  = cosB \: cotx

\rm :\longmapsto\:   tanB   \: =  \: cotx

\rm :\longmapsto\:   tanB   \: =  \: tan\bigg[\dfrac{\pi}{2}  - x\bigg]

\bf :\longmapsto\:   B   \: =  \: \dfrac{\pi}{2}  - x

Now, From equation (1), Taking second and third member,

\rm :\longmapsto\: \dfrac{k \: cosB}{sinx}  = \dfrac{R}{sinC}

On substituting the value of B, we get

\rm :\longmapsto\: \dfrac{k \: cos\bigg[\dfrac{\pi}{2}  - x\bigg]}{sinx}  = \dfrac{R}{sinC}

\rm :\longmapsto\: \dfrac{k \: sinx}{sinx}  = \dfrac{R}{sinC}

\rm :\longmapsto\: k= \dfrac{R}{sinC}

\bf\implies \:R = k \: sinC

Hence, Proved

Identities used

 \boxed{ \bf{ \: sin(\pi - x) = sinx}}

 \boxed{ \bf{ \: sin(x - y) = sinxcosy - sinycosx}}

 \boxed{ \bf{ \: cos(\pi - x)  \:  =  \:  -  \: cosx}}

 \boxed{ \bf{ \: cos(x + y) = cosxcosy - xsiny}}

Attachments:
Similar questions