Physics, asked by jaineambopa65s0, 1 year ago

two forces P and Q have resultant perpendicular to P.the angle between the force is?

Attachments:

Answers

Answered by aman190k
101
●•••••••••• Hello User •••••••••••●
《《 Here is your answer 》》
_________________________

The formula for angle between resultant vector ( R ) and a vector ( A ) .

 \tan( \alpha ) = \frac{b \sin( \theta) }{a + b \cos( \theta) }

Now ,
Given that resultant force is perpendicular to force P.
then ,

 \alpha = 90 \degree

Now , By using the above formula

Considering , a = P and b = Q

\tan( \alpha ) = \frac{b \sin( \theta) }{a + b \cos( \theta) } \\ \\ \tan( 90 \degree ) = \frac{Q \sin( \theta) }{P+ Q \cos( \theta) } \\ \\ \frac{1}{0} = \frac{Q \sin( \theta) }{P+ Q \cos( \theta) } \\ \\( P+ Q \cos( \theta) ) \times 1 = (Q \sin( \theta)) \times 0 \\ \\ P+ Q \cos( \theta) = 0 \\ \\ Q \cos( \theta) = - P \\ \\ \cos( \theta) = - \frac{P}{Q} \\ \\ \theta = - { \cos }^{ - 1} (\frac{P}{Q} )\\
Therefore the angle between two forces P and Q is :

 \theta = - { \cos }^{ - 1} (\frac{P}{Q} )
_____________________________
《《 Hope it may helpful to you 》》

○○○○○ @ajaman ○○○○○
●•••••• ☆ Brainly Star ☆ ••••••●
Answered by ravindrabansod26
11

Answer:

hope it will help you

Explanation:

please mark it as brianlist ans ....

Attachments:
Similar questions