Physics, asked by dekarohan555, 6 months ago

two forces whose magnitude are in ratio3:5 gives resultant 35 N ,if theta =60° .Calculate magnitude of each force

Answers

Answered by Anonymous
125

Diagram :

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,61){$\sf{\overrightarrow{B}}$}\put(60.8,0){$\sf{\overrightarrow{A}}$}\put(50,55){$\sf{\overrightarrow{R}}$}\put(0,5){\vector(0,0){56.5}}\put( - 0.1,5){\vector(1, 0){60.5}}\put(10,8){$\sf{60^{ \circ}}$}\qbezier(0,5)(0,5)(50,55)\qbezier(0,15)(9.99,15)(9,5)\end{picture}

______________________

Given :

\bullet \:  \: \sf  |\overrightarrow{R}|  = 35 \: N \\  \\

\bullet \:  \: \sf  \dfrac{|\overrightarrow{A}|}{|\overrightarrow{B}|}  =  \dfrac{3}{5}  \\  \\

___________________...

Answer :

Let \sf \overrightarrow{A} and \sf \overrightarrow{B} are the two vectors inclined at an angle 60° and \sf \overrightarrow{R} is resultant.

Let \sf \overrightarrow{A}\: be 3x and \sf \overrightarrow{B} be 5x.

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}\\

:\implies \sf \overrightarrow{ |R| } =  \sqrt{ \overrightarrow{{ |A| }} ^{2} + \overrightarrow{{ |B| } }^{2} + 2 \overrightarrow{ |A| } \: \overrightarrow{ |B| } \cos (\theta)  }\\  \\  \\

:\implies \sf 35=  \sqrt{(3x)^{2}  +(5x)^{2}  + 2(2x)(5x) \cos(60) }  \\  \\  \\

:\implies \sf 35=  \sqrt{9x^{2}  +25x^{2}  +  {30x}^{2}  \left( \frac{1}{2}  \right) }  \\  \\  \\

:\implies \sf 35=  \sqrt{9x^{2}  +25x^{2}  +  {15x}^{2}   }  \\  \\  \\

:\implies \sf 35=  \sqrt{49x^{2} }  \\  \\  \\

:\implies \sf 35=  7x  \\  \\  \\

:\implies  \underline{ \boxed{ \textsf{\textbf {x = 5}}}}\\

_________________....

\underline{\boldsymbol{Magnitude\: of \:each\: Force\:is :}}\\

\bullet\:\:\textsf{ $\overrightarrow{A} $= 3(5) =\textbf{ 15 N}}\\\\

\bullet\:\:\textsf{ $\overrightarrow{B} $= 5(5) =\textbf{ 25 N}}

Similar questions