Physics, asked by TweetySwettie, 1 month ago

Two forces whose magnitudes are in the ratio 3:5 give a resultant of 28N. If the angle of their inclination is 60°, find the magnitude of each force. ​

Answers

Answered by XxSonaxX
176

Explanation:

\huge\orange{\mid{\fbox{\tt{Question ⇛}}\mid}}

Two forces whose magnitudes are in the ratio 3:5 give a resultant of 28N. If the angle of their inclination is 60°, find the magnitude of each force. 

\huge\blue{\mid{\fbox{\tt{Answer ⇛}}\mid}}

\huge\mathfrak\red{Solution☟}

Let  \: A  \: and  \: B  \: be \:  the \:  two \:  forces. 

Then  \: A=3x, \: B=5x; \: R=28N  \: and \:  θ= \: 60°. 

Dividing  \: A \:  by \: B ,  \:  \frac{A}{B}  =  \frac{3}{5}

We  \: know \:  that \:  R \: = \sqrt{ a {}^{2} +B {}^{2} +2AB \: cosθ}

⇒28 \: = \:  \sqrt{ (3x) {}^{2} +(5x) {}^{2} +2(3x)(5x)cos60°}

⇒ \sqrt{ 9x {}^{2} +25x {}^{2} +15x {}^{2}} =7x

⇒x= \frac{28}{7} =4

Hence,  \: forces \:  are  A=3×4=12N,B=5×4=20N

Answered by Anonymous
14

Explanation:

Two forces whose magnitudes are in the ratio 3:5 give a resultant of 28N. If the angle of their inclination is 60°, find the magnitude of each force. 

Similar questions