Physics, asked by chshmish41121, 11 months ago

Two friends A and B are standing a distance x apart in an open field and wind is blowing from A to B. A beat a drum and B hears the sound t1 time after he sees the event. A and B interchange their positions and the experiment is repeated. This time B hears the drum timer after he sees the event. Calculate the velocity of sound in still air v and the velocity of wind u. Neglect the time light takes in travelling between the friends.

Answers

Answered by shilpa85475
3

Velocity of sound in  air is v=\frac{x}{2}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right),

Velocity of wind/air  is u=\frac{x}{2}\left(\frac{1}{t_{1}}-\frac{1}{t_{2}}\right).

Explanation:

Step 1:  

Let velocity of \text { air=u } \mathrm{m} / \mathrm{s}

Let the velocity of \text { sound=v } \mathrm{m} / \mathrm{s}

Distance between A and B x m

Step 2:

Case 1 :

Resultant velocity of sound $=u+v$

s=\frac{d}{t}

\text { Speed }=\mathrm{s}

\text { Distance }=\mathrm{d}

Time $=t$

(v+u)=\frac{x}{t_{1}} \ldots \ldots \text { eq }^{n}(1)

Case 2 :

Resultant velocity= v-u

\text {speed}=\frac{\text {distance}}{\text {time}}

(v-u)=\frac{x}{t_{2}}\ldots \ldots \ldots \text { eq }^{n}(2)

adding equation 1 and 2  

Step 3:

we get :

(v+u)+(v-u)=\frac{x}{t_{1}}+\frac{x}{t_{2}}

2 v=\frac{x}{t_{1}}+\frac{x}{t_{2}}

2 v=x\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)

v=\frac{x}{2}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)

Step 4:

subtracting equation 1 and 2

we get :

(v+u)-(v-u)=\frac{x}{t_{1}}-\frac{x}{t_{2}}

v+u-v+u=\frac{x}{t_{1}}-\frac{x}{t_{2}}

2 u=\frac{x}{t_{1}}-\frac{x}{t_{2}}

2 u=x\left(\frac{1}{t_{1}}-\frac{1}{t_{2}}\right)

u=\frac{x}{2}\left(\frac{1}{t_{1}}-\frac{1}{t_{2}}\right)

Velocity of sound in  air =  

v=\frac{x}{2}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}\right)

and

velocity of wind/air =  

u=\frac{x}{2}\left(\frac{1}{t_{1}}-\frac{1}{t_{2}}\right)

Similar questions