Math, asked by vedmantrapatoliya200, 10 months ago

Two identical cubes each of T.S.A = 6 sq.cm. are joined end to end . Which of the following is the T.S.A of the cuboid so formed

Answers

Answered by SarcasticL0ve
4

GivEn:-

  • T.S.A . of two identical cubes = 6 cm²

To find:-

  • T.S.A. of cuboid formed

SoluTion:-

\dag\;{\underline{\underline{\bf{\blue{According\;to\;question:-}}}}}

Total Surface area of cube = 6 cm²

:\implies 6a² = 6 cm²

:\implies\sf a^2 = \cancel{ \dfrac{6}{6}}

:\implies a² = 1

\small\sf\;\;\star\;{\underline{Taking\;Sqrt.\;both\;sides:-}}

:\implies {\underline{\underline{\bf{\pink{a = 1}}}}}

GivEn that,

✩ 2 cubes are joined to form a cuboid,

Therefore,

  • Length of cuboid = 2

  • Breadth of cuboid = 1

  • Height of cuboid = 1

▬▬▬▬▬▬▬▬▬▬▬▬

{\underline{\underline{\bf{\red{\DIAGRAM:}}}}}

CUBE:

\setlength{\unitlength}{0.65cm}\begin{picture}(2,3)\thicklines\put(2,6){\line(1,0){3.3}}\put(2,9){\line(1,0){3.3}}\put(5.3,9){\line(0,-1){3}}\put(2,6){\line(0,1){3}}\put(0,7.3){\line(1,0){3.3}}\put(0,10.3){\line(1,0){3.3}}\put(0,10.3){\line(0,-1){3}}\put(3.3,7.3){\line(0,1){3}}\put(2,6){\line(-3,2){2}}\put(2,9){\line(-3,2){2}}\put(5.3,9){\line(-3,2){2}}\put(5.3,6){\line(-3,2){2}}\put(3.4,5.5){\sf1 cm}\put(0,6.3){\sf1 cm}\put(5.5,7.5){\sf1 cm}\end{picture}

CUBOID Formed by joining 2 cubes:

\setlength{\unitlength}{0.68cm}\begin{picture}(12,4)\linethickness{0.3mm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\qbezier(6,6)(4,7.3)(4,7.3)\qbezier(6,9)(4,10.2)(4,10.3)\qbezier(11,9)(9.5,10)(9,10.3)\qbezier(11,6)(10,6.6)(9,7.3)\put(8,5.5){\sf{2 cm}}\put(4,6.3){\sf{1 cm}}\put(10,7.5){\sf{1 cm}}\end{picture}

▬▬▬▬▬▬▬▬▬▬▬▬

Total Surface Area of cuboid = 2(lb + bh + hl)

:\implies 2(2 × 1 + 1 × 1 + 1 × 2)

:\implies 2(2 + 1 + 2)

:\implies 2(5)

:\implies {\underline{\underline{\bf{\pink{10\;cm^2}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬


Anonymous: Perfect answer :) Keep it up ✓
BraɪnlyRoмan: Superb♡
Similar questions