Physics, asked by bishtkavita3156, 2 months ago

Two identical resistor each of resistance 12ohm are connected A. in series B. in parallel in turn to a battery of 6V. calculate the ratio of power consumed in the combination of resistor in two cases. A. 1;4 b. 4;1c. 2;7 d. 1;6​

Answers

Answered by rsagnik437
58

Answer :-

Ratio of power consumed in the combination of resistor in two cases is 1 : 4 [Option.A] .

Explanation :-

For series connection :-

Equivalent resistance (Rₛ) :-

⇒ Rₛ = R₁ + R₂

⇒ Rₛ = (12 + 12) Ω

⇒ Rₛ = 24 Ω

Power consumed :-

⇒ Pₛ = V²/Rₛ

⇒ Pₛ = (6)²/24

⇒ Pₛ = 36/24

P = 1.5 W

For parallel connection :-

Equivalent resistance (Rₚ) :-

⇒ 1/Rₚ = 1/R₁ + 1/R₂

⇒ 1/Rₚ = 1/12 + 1/12

⇒ 1/Rₚ = 1/6

⇒ Rₚ = 6 Ω

Power consumed :-

⇒ Pₚ = V²/Rₚ

⇒ Pₚ = (6)²/6

⇒ Pₚ = 36/6

P = 6 W

Ratio of power consumed :-

= Rₛ : Rₚ

= 1.5 : 6

= 1.5/6

= 1/4

= 1 : 4

Answered by SavageBlast
192

Given:-

  • Two identical resistor each of resistance 12ohm are connected A in series B. In parallel in turn to a battery of 6V.

To Find:-

  • Ratio of power consumed in the combination of resistor in two cases.

Formula Used:-

  • {\boxed{\sf{R_{(s)}=R_1+R_2}}}

  • {\boxed{\sf{\dfrac{1}{R_{(p)}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}}}}

  • {\boxed{\sf{P=\dfrac{V^2}{R}}}}

Here,

  • \bf R_{(s)}= Equivalent Resistance in series.

  • \bf R_{(p)}= Equivalent Resistance in parallel.

  • \bf P= Power Consumed

  • \bf V= Potential Difference

  • \bf R= Resistance

Solution:-

A) Series connection:-

Using Formula,

\sf :\implies\:R_{(s)}=R_1+R_2

\sf :\implies\:R_{(s)}=12+12

\sf :\implies\:R_{(s)}=24\:ohm

Now,

\sf :\implies\:P_{(s)}=\dfrac{V^2}{R_{(s)}}

\sf :\implies\:P=\dfrac{6^2}{24}

\sf :\implies\:P=\dfrac{36}{24}

\sf :\implies\:P=\dfrac{3}{2}\:W

B) Parallel connection:-

\sf :\implies\:\dfrac{1}{R_{(p)}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}

\sf :\implies\:\dfrac{1}{R_{(p)}}=\dfrac{1}{12}+\dfrac{1}{12}

\sf :\implies\:\dfrac{1}{R_{(p)}}=\dfrac{1+1}{12}

\sf :\implies\:\dfrac{1}{R_{(p)}}=\dfrac{2}{12}

\sf :\implies\:\dfrac{1}{R_{(p)}}=\dfrac{1}{6}

\sf :\implies\:R_{(p)}=6\:ohm

Now,

\sf :\implies\:P_{(p)}=\dfrac{V^2}{R_{(p)}}

\sf :\implies\:P=\dfrac{6^2}{6}

\sf :\implies\:P=\dfrac{36}{6}

\sf :\implies\:P=6\:W

Ratio of power consumed:-

\sf :\implies\:R_{(s)} : R_{(p)}=\dfrac{3}{2} : 6

\sf :\implies\:\dfrac{R_{(s)}}{R_{(p)}}=\dfrac{\dfrac{3}{2}}{6}

\sf :\implies\:\dfrac{R_{(s)}}{R_{(p)}}=\dfrac{3}{2\times6}

\sf :\implies\:\dfrac{R_{(s)}}{R_{(p)}}=\dfrac{1}{2\times2}

\sf :\implies\:\dfrac{R_{(s)}}{R_{(p)}}=\dfrac{1}{4}

Hence, The Ratio of power consumed in the combination of resistor in two cases is 1 : 4.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions