Two identical resistor each of resistance 12ohm are connected A. in series B. in parallel in turn to a battery of 6V. calculate the ratio of power consumed in the combination of resistor in two cases. A. 1;4 b. 4;1c. 2;7 d. 1;6
Answers
Answered by
58
Answer :-
Ratio of power consumed in the combination of resistor in two cases is 1 : 4 [Option.A] .
Explanation :-
For series connection :-
Equivalent resistance (Rₛ) :-
⇒ Rₛ = R₁ + R₂
⇒ Rₛ = (12 + 12) Ω
⇒ Rₛ = 24 Ω
Power consumed :-
⇒ Pₛ = V²/Rₛ
⇒ Pₛ = (6)²/24
⇒ Pₛ = 36/24
⇒ Pₛ = 1.5 W
For parallel connection :-
Equivalent resistance (Rₚ) :-
⇒ 1/Rₚ = 1/R₁ + 1/R₂
⇒ 1/Rₚ = 1/12 + 1/12
⇒ 1/Rₚ = 1/6
⇒ Rₚ = 6 Ω
Power consumed :-
⇒ Pₚ = V²/Rₚ
⇒ Pₚ = (6)²/6
⇒ Pₚ = 36/6
⇒ Pₚ = 6 W
Ratio of power consumed :-
= Rₛ : Rₚ
= 1.5 : 6
= 1.5/6
= 1/4
= 1 : 4
Answered by
192
Given:-
- Two identical resistor each of resistance 12ohm are connected A in series B. In parallel in turn to a battery of 6V.
To Find:-
- Ratio of power consumed in the combination of resistor in two cases.
Formula Used:-
Here,
- Equivalent Resistance in series.
- Equivalent Resistance in parallel.
- Power Consumed
- Potential Difference
- Resistance
Solution:-
A) Series connection:-
Using Formula,
Now,
B) Parallel connection:-
Now,
Ratio of power consumed:-
Hence, The Ratio of power consumed in the combination of resistor in two cases is 1 : 4.
━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions