Physics, asked by rahulsingh240403, 5 months ago

two insulating charge copper sphere A and B have their centred​

Attachments:

Answers

Answered by Steph0303
7

Answer:

  • Force = 0.1521 N

Given Information:

  • Distance of Separation = 50 cm = 0.5 m
  • Charge on each sphere = 6.5 × 10⁻⁷ C

To find:

  • Force of Electrostatic Repulsion

Steps:

\boxed{\text{Electrostatic Force} = \dfrac{k q_1q_2}{r^2}}

where,

'q1' and 'q2' are the charges on each sphere, 'r' is the separation distance and 'k' is Coulomb constant which has a value 9 × 10⁹ units.

Substituting the values we get:

\implies Force = \dfrac{ 9 \times 10^9 \times 6.5 \times 10^{-7} \times 6.5 \times 10^{-7}}{ (0.5)^2}\\\\\\\implies Force = \dfrac{ 9 \times 6.5 \times 6.5 \times 10^{(9 - 7 - 7)}}{0.25}\\\\\\\implies Force = \dfrac{ 380.25 \times 10^{-5}}{0.25}\\\\\\\implies Force = 1521 \times 10^{-5} = \boxed{ 0.1521\: N}

Hence the force of electrostatic repulsion is 0.1521 N.

Answered by Anonymous
9

Required answer -

Question -

Two insulating charge copper sphere A and B have their centred separated by 50 cm. It is the mautual electrostatic repulsion if the on each is 6.5 × 10-⁷C. Find force.

Given that -

Separation distance = 50 cm or 0.5 m

Charges on each copper sphere = 6.5 × 10-⁷C

To find -

Force of the electrostatic repulsion

Solution -

Force of the electrostatic repulsion = 0.1521N

Using concept -

Formula to find electrostatic repulsion

Using formula -

\: \: \:{\boxed{\boxed{\sf{\longrightarrow Electrostatic \: repulsion \: = \dfrac{kq_{1}q_{2}}{ {r}^{2}}}}}}

Where,

k denotes colounb constant whose value is 9 × 10⁹ units.

q₁ and q₂ denotes the charges of the spheres.

r denotes distance of separation.

Now let's put the values according to the formula,

\: \: \: \:{\sf{\longmapsto Electrostatic \: repulsion \: = \dfrac{kq_{1}q_{2}}{ {r}^{2}}}}

{\sf{\longmapsto Force \: = \dfrac{9 \times  {10}^{9} \times 6.5 \times  {10}^{ - 7}   \times 6.5 \times  {10}^{ - 7}}{0.25}}}

\: \: \: \:{\sf{\longmapsto Force \: = \dfrac{9 \times 6.5 \times 6.5 \times 10^{(9 - 7 - 7)}}{0.25}}}

{\sf{\longmapsto Force \: = \dfrac{380.25 \times 10^{-5}}{0.25}}}

\: \: \: \:{\sf{\longmapsto Force \: = 1521 \times 10^{-5}}}

{\sf{\longmapsto Force \: = 0.1521N}}

More knowledge -

Physics

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Kinetic \: energy \: is \: given \: by \: \dfrac{1}{2}mv^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Value \: of \: G \: is \: 6.673 \times 10^{-11}Nm^{2}kg{-3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Dimensional \: formula \: for \: universal \: gravitational \: constant \: is \: M^{-1} L^{3} T^{-2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto The \: unit \: of \: force \: constant \: k \: of \: a \: spring \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Sir \: Cavendish \: was \: the \: first \: to \: gave \: value \: of \: G \: experimentally}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Number \: of \: SI \: units \: are \: 7}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Ampere \: is \: the \: unit \: of \: current \: electricity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: Young's \: modulus \: of \: elasticity \: is \: Newton/m^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: pressure \: is \: Pascal}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Curie \: is \: the \: unit \: of \: radio \: activity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Decibel \: is \: the \: unit \: of \: intensity \: of \: sound}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: electric \: charge \: is \: coulomb}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: resistance \: is \: ohm}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: acceleration \: is \: ms^{-2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Maxwell \: is \: unit \: of \: magnetic \: flux}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: magnetic \: flux \: is \: Weber}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: surface \: tension \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: mechanical \: power \: is \: Watt}}}

Law of Exponents -

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\tt\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\tt{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\tt(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\tt\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\tt\sqrt[\tt n]{\tt a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Attachments:
Similar questions