Physics, asked by magarshruti8, 9 months ago

Two insulating rods of equal length, one of them of charge q and other has charge -q form a circle of radius R (one rod forms one - half of circle) . the electric field at centre of circle is

Answers

Answered by nirman95
3

Given:

Two insulating rods of equal length, one of them of charge q and other has charge -q form a circle of radius R (one rod forms one - half of circle) .

To find:

Net Electrostatic Field at centre.

Calculation:

Let the linear charge density for the rods be \lambda.

So, field due to positive part of circle:

 \vec{E1} =  \dfrac{2k \lambda}{r}  \:  \: ( -  \hat{j})

Again, field due to negative part of the circle:

 \vec{E2} =  \dfrac{2k \lambda}{r}  \:  \: ( -  \hat{j})

So, net field intensity:

 \therefore \:  \vec{E} =  \vec{E1} +  \vec{E2}

  =  >  \:  \vec{E} =   \bigg \{ \dfrac{2k \lambda}{r}  +  \dfrac{2k \lambda}{r}  \bigg \} \:  \: ( -  \hat{j})

  =  >  \:  \vec{E} =   \bigg \{ \dfrac{4k \lambda}{r}    \bigg \} \:  \: ( -  \hat{j})

  =  >  \:  \vec{E} =   \bigg \{ \dfrac{4\lambda}{4\pi \epsilon_{0}r}    \bigg \} \:  \: ( -  \hat{j})

  =  >  \:  \vec{E} =   \bigg \{ \dfrac{\lambda}{\pi \epsilon_{0}r}    \bigg \} \:  \: ( -  \hat{j})

  =  >  \:  \vec{E} =   \bigg \{ \dfrac{ (\frac{q}{\pi r} )}{\pi \epsilon_{0}r}    \bigg \} \:  \: ( -  \hat{j})

  =  >  \:  \vec{E} =   \bigg \{ \dfrac{ q}{ { \pi}^{2}  \epsilon_{0} {r}^{2} }    \bigg \} \:  \: ( -  \hat{j})

So, final answer is:

  \boxed{ \red{ \bold{ \:  \vec{E} =   \bigg \{ \dfrac{ q}{ { \pi}^{2}  \epsilon_{0} {r}^{2} }    \bigg \} \:  \: ( -  \hat{j})}}}

Attachments:
Similar questions