Physics, asked by gireshadithya, 10 months ago


Two masses 10gm and 40gm are moving with kinetic energies in the ratio 9:25.
The ratio of their linear momenta is
1) 5:6
2) 3:10
3) 6:5
4) 10:3​

Answers

Answered by BrainlyConqueror0901
13

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{P_{1}:P_{2}=3:10}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Two \: mases = 10 \: gm \: and \: 40 \: gm \\  \\ \tt: \implies Ratio \: of \: kinetic \: energy = 9 :25 \\  \\  \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies Ratio \: of \: momentum =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{K.E_{1} }{ K.E_{2} }  =  \frac{9}{25}  \\  \\ \tt:  \implies  \frac{ \frac{1}{2} m_{1} (v_{1})^{2}}{\frac{1}{2} m_{2} (v_{2})^{2}}  =  \frac{9}{25}  \\  \\  \tt:  \implies  \frac{2 m_{1}( { v_{1} })^{2} }{2 m_{2} ({ v_{2} })^{2}}  =  \frac{9}{25}  \\  \\ \tt:  \implies  \frac{10 \times{ (v_{1} })^{2} }{40 \times { (v_{2} })^{2}} =  \frac{9}{25}   \\  \\  \tt:  \implies  \frac{({ v_{1} })^{2} }{4({ v_{2} })^{2}} =  \frac{9}{25}  \\  \\ \tt:  \implies  \frac{{ v_{1} }^{2} }{{ v_{2} }^{2}} =  \frac{9 \times 4}{25}  \\  \\ \tt:  \implies  (\frac{v_{1} }{v_{2}})^{2}  =  \frac{36}{25}  \\  \\ \tt:  \implies  \frac{{ v_{1} }}{{ v_{2} }} =  \sqrt{ \frac{36}{25} }  \\  \\  \green{\tt:  \implies  \frac{{ v_{1} }}{{ v_{2} }} =   \frac{6}{5} } \\ \\\bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{ P_{1}}{ P_{2} }  =  \frac{ m_{1} v_{1}  }{m_{1} v_{2}}  \\  \\ \tt:  \implies  \frac{ P_{1}}{ P_{2} }  =  \frac{10 \times 6}{40 \times 5}  \\  \\  \green{\tt:  \implies  \frac{ P_{1}}{ P_{2} }  = \frac{3}{10} }  \\\\\green{\tt \therefore Ratio \: of \: momentum \: is \:3: 10}

Answered by BrainlyPopularman
49

GIVEN :

Two masses 10gm and 40gm are moving with kinetic energies in the ratio 9:25.

TO FIND :

Ratio of liner moment = ?

SOLUTION :

• We know that kinetic energy is –

 \\  \longrightarrow \: { \boxed{ \bold{K.E. =  \frac{1}{2}m {v}^{2}  }}} \\

• According to the question –

 \\  \implies\: { \bold{ \dfrac{(K.E.) _{1}}{(K.E.) _{2}} =  \dfrac{9}{25}  }} \\

 \\  \implies\: { \bold{ \dfrac{ \dfrac{1}{2}m_{1}v {}^{2}   _{1}}{\dfrac{1}{2}m_{2}v {}^{2}   _{2}} =  \dfrac{9}{25}  }} \\

 \\  \implies\: { \bold{ \dfrac{ (10)v {}^{2}   _{1}}{(40)v {}^{2}   _{2}} =  \dfrac{9}{25}  }} \\

 \\  \implies\: { \bold{ \dfrac{ v {}^{2}   _{1}}{4v {}^{2}   _{2}} =  \dfrac{9}{25}  }} \\

 \\  \implies\: { \bold{ \dfrac{ v {}^{2}   _{1}}{v {}^{2}   _{2}} =  \dfrac{9 \times 4}{25}  }} \\

 \\  \implies\: { \bold{ \dfrac{ v    _{1}}{v   _{2}} =   \sqrt{\dfrac{36}{25}}  }} \\

 \\  \implies\: \large { \boxed{ \bold{ \dfrac{ v    _{1}}{v   _{2}} =   {\dfrac{6}{5}}  }}} \\

• We know that Liner momentum

 \\  \longrightarrow  \: \large { \boxed{ \bold{P =  mv  }}} \\

• So that , ratio of Liner moment –

 \\  \implies \:  { \bold{ \dfrac{P _{1}}{P _{2}} =   \dfrac{m_{1} v_{1}}{m_{2} v_{2}}   }} \\

 \\  \implies \:  { \bold{ \dfrac{P _{1}}{P _{2}} =    \left( \dfrac{m_{1}}{m_{2}  } \right)  \left( \dfrac{v_{1}}{v_{2}  } \right)}} \\

• Now put the values –

 \\  \implies \:  { \bold{ \dfrac{P _{1}}{P _{2}} =    \left( \dfrac{10}{4 0  } \right)  \left( \dfrac{6}{5} \right)}} \\

 \\  \implies \:  { \bold{ \dfrac{P _{1}}{P _{2}} =    \dfrac{60}{200 }   }} \\

 \\  \implies \:  \large { \boxed{ \bold{ \dfrac{P _{1}}{P _{2}} =    \dfrac{3}{10 }  } }} \\

▪︎ Hence , Option (B) is correct.

Similar questions