Physics, asked by ZzyetozWolFF, 4 months ago

Two masses 50 kg and 100 kg are separated by a distance of 10 m. What is the gravitational force of attraction between them? G = 6.67 * 10^-11 Nm^2/kg^2​

Answers

Answered by Anonymous
16

Question:-

  • Two masses 50 kg and 100 kg are separated by a distance of 10 m. What is the gravitational force of attraction between them?

Given Values:

  • Two masses 50 kg and 100 kg are separated by a distance of 10 m.
  • G = 6.67 * 10-¹¹ Nm²/kg²

To Find:

  • What is the gravitational force of attraction between them.?

Solution:

 \sf \underline{ \purple{★According \: to \: the \: question : }}

 \sf \blue➷ {m}^{1}  = 50kg   \:  \:  \:  \:  \:  \:  \: \:  \: \\ \sf \blue➷ {m}^{2}  = 100kg  \:  \:  \:  \:  \:  \:  \: \\ \sf \blue➷distance = 10m

__________________________________________

Now,Formula used :

 \tt{ \pink{\underline{\: ↬force = gravity \times  {m}1  \times  {m}2  \div  {d}^{2} }}}

◈━━━━━━━━━ ⸙ ━━━━━━━━━━ ◈

\sf\underline{ \purple{❀ Now \:let's\:put \: up\: the \: values \: assigned \: which \: are \: given \: in \: the \: hint\: of \: the \: question}}

: \implies \bf{ 6.7 \times  {10}^{ - 11}  \times 50 \times  \frac{100}{10}  \times 10} \\  \\ : \implies  \bf{67 \times   {10}^{ - 12}  \times \cancel  \frac{5000}{100} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \\  \\ : \implies \bf{ 67 \times  \frac{10}{ - 12}  \times 50} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ : \implies \bf 67 \times 5 \times 10 \times  - 11 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ : \implies \sf 335 \times  {10}^{ - 11} newton \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\pink{ \underline{ \boxed{ \purple{ \mathfrak{ \therefore \:force \: applied = 335 \times  {10}^{ - 11} newton}}}}}\blue★

◈━━━━━━━━━ ⸙ ━━━━━━━━━━ ◈

➺Info Related to force and pressure

 \pink➷ \rm \: force = mass \times acceleration \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \\  \\ \pink➷ \rm \: pressure =  \frac{force}{acceleration}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \pink➷ \rm \: force \: on \: earth \: is \: 6 \: times \: more \: than \: force \: on \: moon

__________________________________________

Do you know.?

\sf\underline\blue{★newton's \:law \:of \:gravity}

➷Newton's law of gravitation states that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses.

__________________________________________

Additional info:

★The SI unit of pressure is pascal

Hydrostatic Pressure Formula:

➺p equals density×gravity ×hieght

★ S.I unit of mass is kilogram

★gravity on earth= 9.81 m/s²

★Number of SI units are 7

★Momentum is measured as the product of Mass and velocity

★SI unit of mechanical power is watt

★SI unitof magnetic flux is Weber

★SI unit of mechanical power is watt

__________________________________________

↬scroll form left to right to view the full answer.!

hope this helps.!

#be brainly:)


ZzyetozWolFF: Perfect! ❤
Anonymous: thanks mam:)
Anonymous: well presented.!❤ try eleborating the content much better.!
Anonymous: thanks:) I try editing this and elaborating better.!
Anonymous: Well incountered!
Anonymous: thanks a lot.!
Anonymous: Greatly presented the whole calculation...
Very very nice..! ❤
Anonymous: thanks a lot.!
mddilshad11ab: great¶
Answered by Anonymous
15

{\large{\bold{\rm{\underline{Understanding \; the \; question}}}}}

This question says that two masses of 50 kg and 100 kg are separated by a distance of 10 m. We have to find out that what is the gravitational force of attraction between them?

Hint is given for help that {\sf{\red{G \: = \: 6.67 \times 10^{-11} \: Nm^{2} / kg^{2}}}}

{\large{\bold{\rm{\underline{Given \; that}}}}}

Mass m1 of a body = 50 kg.

Mass m2 of another body = 100 kg.

The two bodies are separated by a distance d of 10 metres.

{\large{\bold{\rm{\underline{To \; find}}}}}

The gravitational force of attraction between them (2 bodies)

{\large{\bold{\rm{\underline{Solution}}}}}

The gravitational force of attraction between them (2 bodies) = {\sf{\red{335 \times 10^{-11}N}}}

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

~ So according to the question, let's use given hint !

{\sf{\implies G \: = \: 6.67 \times 10^{-11} \: Nm^{2} / kg^{2}}}

~ According to hint the coming equation is

{\sf{\implies F \: = \: G \times m1 \times m2 / d^{2}}}

~ Let's substitute the values,

{\sf{\implies F \: = \: 6.7 \times 10^{-11} \times 50 \times 100/10 \times 10}}

{\sf{\implies F \: = \: 6.7 \times 10^{-11} \times 5000/100}}

{\sf{\implies F \: = \: 6.7 \times 10^{-11} \times 50}}

{\sf{\implies F \: = \: 6.7 \times 50 \times 10^{-11}}}

{\sf{\implies F \: = \: 335 \times 10^{-11}}}

  • Henceforth, the gravitational force of attraction between them (2 bodies) = {\sf{\red{335 \times 10^{-11}N}}}

{\large{\bold{\rm{\underline{Additional \; knowledge}}}}}

Law of Gravitation :

\setlength{\unitlength}{7mm} \begin{picture}(6,6)\thicklines\put(2,2){\circle{14}}\put(8,2){\circle{14}} \put(2,2){\circle*{0.15}} \put(8,2){\circle*{0.15}} \put(2,2){\line(1,0){6}} \put(4,2){\line( - 1,1){0.5}} \put(6,2){\line(1,1){0.5}} \put(4,2){\line( - 1, - 1){0.5}} \put(6,2){\line( 1, -1){0.5}} \put(4.5,0.7){\vector( - 1,0){2.7}} \put(5.4,0.7){\vector(1,0){2.8}}\put(4.75,0.6){$ \bf d $}\put( 3.3, - 1){ \framebox{$ \bf F = \displaystyle \dfrac{G Mm }{ d^2} $}}\end{picture}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Maxwell \: is \: unit \: of \: magnetic \: flux}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: magnetic \: flux \: is \: Weber}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: surface \: tension \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: mechanical \: power \: is \: Watt}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto 1 \: horsepower \: = \: approx \: 746 \: watts}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Momentum \: is \: measured \: as \: the \: product \: of \: Mass \: and \: velocity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto \pi \: 'pi' \: is \: calculated \: by \: Aryabhatta}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto One \: J \: = \: 0.24 \: cal}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Kinetic \: energy \: is \: given \: by \: \dfrac{1}{2}mv^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Value \: of \: G \: is \: 6.673 \times 10^{-11}Nm^{2}kg^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Dimensional \: formula \: for \: universal \: gravitational \: constant \: is \: M^{-1} L^{3} T^{-2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto The \: unit \: of \: force \: constant \: k \: of \: a \: spring \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Sir \: Cavendish \: was \: the \: first \: to \: gave \: value \: of \: G \: experimentally}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto The \: Young's \: modulus \: for \: perfect \: rigid \: body \: is \: infinite}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Density \: is \: the \: ratio \: of \: \dfrac{Volume}{Mass}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Number \: of \: SI \: units \: are \: 7}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Ampere \: is \: the \: unit \: of \: current \: electricity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: Young's \: modulus \: of \: elasticity \: is \: Newton/m^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: pressure \: is \: Pascal}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Curie \: is \: the \: unit \: of \: radio \: activity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Decibel \: is \: the \: unit \: of \: intensity \: of \: sound}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: electric \: charge \: is \: coulomb}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: resistance \: is \: ohm}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: acceleration \: is \: ms^{-2}}}}


ZzyetozWolFF: Amazing. ❤
Anonymous: nice.!
Anonymous: Thank uh @MrCostheta :)
Anonymous: @ZzyetozWolFF Aapka bhi shukriya (: ♥️
Anonymous: mast.! nailed it sis.!❤
Anonymous: Yeah..! Shukriya :)
mddilshad11ab: perfect
Similar questions