Physics, asked by raman4567, 6 months ago

Two masses 8 kg and 12 kg are connected at the two ends of a light inextensible strings that goes over a frictionless pulley. Find the acceleration of the masses and the tension in the string when the masses are released.

Answers

Answered by PrankishGirl
65

 \bf \: {SOLUTION :  - }

The given system of two masses and a pulley can be represented as shown in the above attached figure ↑↑.

 \rm \: Smaller \: mass \: m_1 = 8kg

 \rm \: Larger \: mass \: m_2 = 12kg

Tension in the string = T

 \rm Mass \: m_2 \: owing \: to \: its \: weight \: moves \: downward \\\rm \: with \: acceleration \: a \: and \: mass \: m_1 \: moves \: upward. \:

Applying Newton's second law of motion to the system of each mass

 \rm \: For \: mass \: m_1 \: the \: equation \: of \: motion \: can \: be \:  written \: as :

 \rm \: T - m_1g = ma \:  \:  \:  \:  \:  \:  \: ...(i)

 \rm \: For \: mass \: m_2 \: the \: equation \: of \: mass \: can \: be \: written \: as :

 \rm \: m_2g - T = m_2a \:  \:  \:  \:  \:  \:  \: ...(ii)

Adding both equations (i) and (ii), we get:

 \rm \: (m_2 - m_1)g = (m_1 + m_2)a

 \therefore \rm \: a =  \bigg( \frac{m_2 - m_1}{m_1 + m_2} \bigg)g \:  \:  \:  \:  \:  \:  \: ...(iii)

 \rm \:   = \bigg( \frac{12 - 8}{12 + 8} \bigg) \times  \frac{4}{20} = 2m s {}^{2}

Therefore, the acceleration of the masses is 2m/s².

Substituting the value of a in equation (ii), we get:

 \rm \: m_2g - T = m_2 \bigg( \frac{m_2 - m_1}{m_1 +  m_2} \bigg) \: g

 \rm \: T =  \bigg( m_2 - \frac{m_2 {}^{2}  - m_1m_2}{m_1 + m_2} \bigg) \: g

 \rm \:  =  \bigg( \frac{2m_1m_2}{m_1 + m_2} \bigg) \: g

 \rm \:  =  \bigg( \frac{2 \times 12 \times 8}{12 + 8} \bigg) \times 10

 \rm \:   =  \frac{2 \times 12 \times 8}{20}  \times 10  = 96N

Therefore, the tension in the string is 96 N.

Attachments:
Answered by shadowsabers03
61

If two masses \sf{m_1} and \sf{m_2} (in kg) where \sf{m_1>m_2} are connected at the two ends of a light inextensible string that goes over a frictionless pulley, then the acceleration of the system and the tension in the string are respectively,

  • \sf{a=\left(\dfrac{m_1-m_2}{m_1+m_2}\right)g}

and,

  • \sf{T=\dfrac{2m_1m_2g}{m_1+m_2}}

Let \sf{g=10\ m\,s^{-2}.}

In the question,

  • \sf{m_1=12\ kg}
  • \sf{m_2=8\ kg}

Then, acceleration of the system,

\sf{\longrightarrow a=\left(\dfrac{m_1-m_2}{m_1+m_2}\right)g}

\sf{\longrightarrow a=\left(\dfrac{12-8}{12+8}\right)10}

\sf{\longrightarrow\underline{\underline{a=2\ m\,s^{-2}}}}

And, tension in the string,

\sf{\longrightarrow T=\dfrac{2m_1m_2g}{m_1+m_2}}

\sf{\longrightarrow T=\dfrac{2\times12\times8\times10}{12+8}}

\sf{\longrightarrow\underline{\underline{T=96\ N}}}

Similar questions