Two masses m _{1} and m _{2} are connected by massless strings as shown in fig. find the value of tensions in the string if a force of 200 N is applied on m _{1} and m_{2}
Answers
Given that,
Given that,Mass m1=80kg
Given that,Mass m1=80kgMass m2=150kg
Given that,Mass m1=80kgMass m2=150kgForce F=200N
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow,
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a a=1.15m/s2
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a a=1.15m/s2now, the tension is
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a a=1.15m/s2now, the tension is T=m×a
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a a=1.15m/s2now, the tension is T=m×a T=150×1.15
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a a=1.15m/s2now, the tension is T=m×a T=150×1.15 T=173N
Given that,Mass m1=80kgMass m2=150kgForce F=200NNow, F=(m1+m2)a 200=(80+150)a a=1.15m/s2now, the tension is T=m×a T=150×1.15 T=173NHence, this is required solution