Two men on either side of the cliff 75 m high observes the angles of elevation of the top of the cliff to be 30∘ and 60∘ respectively. Find the distance between the two men.
Answers
Answered by
1
Answer:
Step-by-step explanation:
let h be the height of the cliff and A and B be the point of observation and DC be the cliff
then in ∆ADC
tan 60°= p/b
√3 = 75/b1
b1 = 75/√3. ....(1)
and in ∆BDC
tan 30° = p/b
1/√3 = 75/b2
b2 = 75√3. ......(2)
on adding eq. (1) and(2) we get
b1+b2 = 75/√3+75√3
AB = (75+75)/√3
= 150/√3
= 50√3 Ans
Similar questions