Math, asked by rajaryan08875, 7 months ago

Two men standing on opposite sides of a tower measure the angles of elevation of the top of the tower is 30 degree and 60 degree respectively. If the height of the tower is 100 m, then find the distance between the two men.​

Answers

Answered by rp03226274300
1

Answer:

hope it helps

Step-by-step explanation:

pls mark as brainliest

Attachments:
Answered by VedankMishra
2

Answer:

Answer:

80\sqrt{3} \\

Step-by-step explanation:

Given :Two men standing on opposite sides of a tower measure the angles of elevation of the top of the tower is 30 degree and 60 degree respectively.

To Find: If the height of the tower is 20 m, then find the distance between the two men.

Solution :

Refer the attached figure:

AC (Height of tower )= 20 m

In ΔABC

∠ABC = 30°

perpendicular = AC= 20 m

Base = BC

To find BC we will use trigonometric ratios

tan\theta=\frac{perpendicular}{base}tanθ= </p><p>base \: </p><p>perpendicular \\

tan 30 ^{\circ}=\frac{AC}{BC}tan30

=

BC

AC

</p><p>\frac{1}{\sqrt{3}} =\frac{20}{BC} </p><p>3</p><p>	</p><p> </p><p>1</p><p>	</p><p> = </p><p>BC</p><p>20 \\

BC =20*\sqrt{3}BC=20∗ </p><p>3</p><p>

InΔADC

∠ADC = 60°

perpendicular = AC= 20 m

Base = DC

To find DC we will use trigonometric ratios

tan\theta=\frac{perpendicular}{base}tanθ=  \\

base

perpendicular

</p><p>tan 60 ^{\circ}=\frac{AC}{DC}tan60 </p><p>∘</p><p> = </p><p>DC</p><p>AC

sqrt{3}=\frac{20}{DC} </p><p>3</p><p>	</p><p> = </p><p>DC</p><p>20</p><p>	</p><p> </p><p></p><p>DC =\frac{20}{\sqrt{3}}DC=  </p><p>3</p><p>	</p><p> </p><p>20

an 60 ^{\circ}=\frac{AC}{DC}tan60 </p><p>∘</p><p> = </p><p>DC</p><p>AC</p><p>	</p><p> </p><p></p><p>\sqrt{3}=\frac{20}{DC} </p><p>3</p><p>	</p><p> = </p><p>DC</p><p>20</p><p>	</p><p> </p><p></p><p>DC =\frac{20}{\sqrt{3}}DC=  </p><p>3</p><p>	</p><p> </p><p>20

The distance between two men = BC+CD

=20\sqrt{3}+\frac{20}{\sqrt{3}}20 </p><p>3</p><p>	</p><p> + </p><p>3</p><p>	</p><p> </p><p>20</p><p>	</p><p> </p><p></p><p>=80\sqrt{3} \\

Hence the distance between the two men is

80\sqrt{3} \\

Similar questions