Math, asked by Anonymous, 1 year ago

two Mercury drops each of radius r merge to form a bigger drop. calculate the surface energy released ?​

Answers

Answered by Anonymous
14

\huge\boxed{\pink\star\mathfrak\orange{\large{\underline{\underline{Solution:-}}}} }

Surface area of one drop before merging = \large\bold{4\pi {r}^{2} }

total surface area of both the drops= \large\bold{8\pi {r}^{2} }

hence, the surface energy before merging = \large\bold{8\pi {r}^{2} s.}

when the drop merge, the volume of the bigger drop,

\large\bold{ =  > 2 \times  \frac{4}{3} \pi {r}^{3}  =  \frac{8}{3} \pi {r}^{3} }

if the radius of this new drop is R.

\large\bold{ \frac{4}{3} \pi {r}^{3}  =  \frac{8}{3} \pi {r}^{3} }

\large\bold{ =  > R =  {2}^{ \frac{1}{3} } r}

\large\bold{ =  >  4\pi {R}^{2}  = 4 \times  {2}^{ \frac{2}{3} }  \times \pi {r}^{2} }

hence, the surface energy=

\large\bold{4  \times  {2}^{ \frac{2}{3} }  \times \pi \times  {r}^{2} }

the released surface energy =

\large\bold{8\pi \times  {r}^{2} S - 4 \times  {2}^{ \frac{2}{3} } \pi \times  {r}^{2} S}

\large\bold{ =  > 1.65\pi \times  {r}^{2} S.}

__________________________________


Anonymous: well done !!♥
Anonymous: thank you ( ◜‿◝ )♡
Similar questions