Math, asked by ashwin5607, 1 year ago

Two non-zero vectors are parallel if their vector product is

Answers

Answered by MaheswariS
2

\textbf{Concept used:}

\text{The vector product of two non-zero vectors }

\text{$\overrightarrow{a}$ and $\overrightarrow{b}$ is}

\overrightarrow{a}{\times}\overrightarrow{b}=|\overrightarrow{a}|\;|\overrightarrow{b}|\;sin\theta\;\widehat{n}

\text{$\widehat{n}$ is the unit vector perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$}

\text{Suppose the vectors are parallel}

\text{Then, $\theta=0^{\circ}$}

\overrightarrow{a}{\times}\overrightarrow{b}=|\overrightarrow{a}|\;|\overrightarrow{b}|\;sin\,0^{\circ}\;\widehat{n}

\overrightarrow{a}{\times}\overrightarrow{b}=|\overrightarrow{a}|\;|\overrightarrow{b}|(0)\widehat{n}

\implies\bf\overrightarrow{a}{\times}\overrightarrow{b}=\overrightarrow{0}

Similar questions