Math, asked by tanushree1234567890, 1 year ago

Two number are in the ratio 2:3. If 4 be subtracted from each, they are in the ratio 3:5. The number are​

Answers

Answered by Darvince
9

Answer:

The Numbers are 16 and 24.

Step-by-step explanation:

Gívєn -

Two numbers are in Ratio = 2 : 3

If 4 is subtracted from each, they are in the ratio = 3:5

Tσ fínd -

The Numbers

Sσlutíσn -

Let the numbers be as -

  • One as 2x
  • Second as 3x

\rule{300}{1.5}

When 4 is subtracted -

  • First Number --> (2x - 4) --> 3
  • Second Number --> (3x - 4) --> 5

\rule{300}{1.5}

\boxed{\sf{\frac{(2x - 4)}{(3x - 4)}  =  \frac{3}{5}}}

 \sf{\implies} \: \dfrac{(2x - 4)}{(3x - 4)}  =  \dfrac{3}{5}

 \sf{\implies} \:Cross \: Multiply

 \sf{\implies} \:5(2x - 4) = 3(3x - 4)

 \sf{\implies} \:10x - 20 = 9x - 12

 \sf{\implies} \:10x - 9x = 20 - 12

 \sf{\implies} \:x = 8

\rule{300}{1.5}

First Number -

 \sf{\implies} \:2x

 \sf{\implies} \:2(8)

 \sf{\implies} \:16

First Number = 16

\rule{300}{1.5}

Second Number -

 \sf{\implies} \:3x

 \sf{\implies} \:3(8)

 \sf{\implies} \:24

Second Number = 24

\therefore The Numbers are 16 and 24.

Answered by BrainlyConqueror0901
13

Answer:

\huge{\pink{\green{\sf{first\:number=16}}}}

\huge{\pink{\green{\sf{second\:number=24}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

▪In question we have to find two unknown numbers by the given information.

▪So according to given question:

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \orange{ \underline{given}}} \\  {\green{ratio = 2 :  3}} \\ {\green{let \: first \: number= 2x}} \\ {\green{let \: second \: number= 3x}} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \red{ \underline{again,}}} \\ {\green{ratio =   3 : 5 \:  \: (when \: 4 \: is \: subtracted \: from \: each \: number}} \\ {\green{let \: first \: number= 3x}} \\ {\green{let \: second \: number= 5x}}

▪So from this information we get two eqn in which only one variable to be find that is X.

 \to  \frac{2x - 4}{3x - 4}  =  \frac{3x}{5x}  \\  \to 10 {x}^{2} - 20x = 9 {x}^{2}   - 12x \\  \to 10 {x}^{2}  -  {9x}^{2}  =  - 12x + 20x \\  \to  {x}^{2}  = 8x \\ \to  x \times x = 8x  \\  \to x =  \frac{8x}{x} \\  \to x = 8

▪We get the value of x that is x=8.

 \to first \: number = 2x \\  { \green{\therefore first \: number = 2 \times 8 = 16}} \\  \\  \to second \: number = 3x \\  { \green{\therefore second \: number = 3 \times 8 = 24}}

_________________________________________

Similar questions