Math, asked by rohanrudresh, 11 months ago

two numbers add up to 70 one third of the larger number is 10 more than one seventh of the smaller number find the number​

Answers

Answered by harendrachoubay
14

Larger number = 42 and smaller number = 28

Step-by-step explanation:

Let the larger number = x and

The smaller number = y

To find, the two numbers = ?

According to question,

x + y = 70                  ...........(1)

And,

\dfrac{x}{3} =\dfrac{y}{7} +10

\dfrac{x}{3} -\dfrac{y}{7}=10         ..............(2)

Multiplying equation (1) by \dfrac{1}{7} and adding (2), we get

\dfrac{x}{7} +\dfrac{y}{7}+\dfrac{x}{3} -\dfrac{y}{7} =\dfrac{70}{7} +10

\dfrac{x}{7}+\dfrac{x}{3}=20

\dfrac{10x}{21} =20

⇒ x = 42

Put x = 42 in equation (1), we get

42 + y = 70    

⇒ y = 70 - 42 = 28

∴ Larger number = 42 and smaller number = 28

Answered by inchudevi459
9

Larger number =42

Smaller number=28

Step-by-step explanation:

Let the larger number be x.

and smaller numaber be y.

according to question

x+y=70-(i)\\\therefore\frac{1}{3}of x=\frac{1}{7}of y+10\\\frac{x}{3}=\frac{y}{7}+10\\\frac{x}{3}-\frac{y}{7}=10-(ii)

Solving equation (i) and (ii)

Multiply \frac{1}{7} in equation(i) and 1 in equation (i)

x+y=70- (i)\times\frac{1}{7}\\\frac{x}{3}-\frac{y}{3}=10-(ii)\times1\\

\frac{x}{7}+\frac{y}{7}=\frac{70}{7}\\\frac{x}{3}-\frac{y}{7}=10\\\frac{x}{7}+\frac{y}{7}=10-(iv)\\\frac{x}{3}-\frac{y}{7}=10-(v)

Adding equation (iv) and (v)

\frac{x}{7}+\frac{y}{7}+(\frac{x}{3}-\frac{y}{3})=10+10\\\frac{x}{7}+\frac{x}{3}=20\\\\\frac{10x}{21}=20\\x=42

put x=42 in equation (i)

42+y=70\\y=28

Similar questions