Math, asked by surajkumar9587, 5 months ago

Two numbers add up to 70. One third of the larger number is 10 more than one
seventh of the smaller number. Find the numbers.

Answers

Answered by jogita11
4

Answer:

Larger number = 42 and smaller number = 28

Let the larger number be x.

and smaller numaber be y.

according to question

\begin{gathered}x+y=70-(i)\\\therefore\frac{1}{3}of x=\frac{1}{7}of y+10\\\frac{x}{3}=\frac{y}{7}+10\\\frac{x}{3}-\frac{y}{7}=10-(ii)\end{gathered}x+y=70−(i)∴31ofx=71ofy+103x=7y+103x−7y=10−(ii)

Solving equation (i) and (ii)

Multiply \frac{1}{7}71 in equation(i) and 1 in equation (i)

\begin{gathered}x+y=70- (i)\times\frac{1}{7}\\\frac{x}{3}-\frac{y}{3}=10-(ii)\times1\\\end{gathered}x+y=70−(i)×713x−3y=10−(ii)×1

\begin{gathered}\frac{x}{7}+\frac{y}{7}=\frac{70}{7}\\\frac{x}{3}-\frac{y}{7}=10\\\frac{x}{7}+\frac{y}{7}=10-(iv)\\\frac{x}{3}-\frac{y}{7}=10-(v)\end{gathered}7x+7y=7703x−7y=107x+7y=10−(iv)3x−7y=10−(v)

Adding equation (iv) and (v)

\begin{gathered}\frac{x}{7}+\frac{y}{7}+(\frac{x}{3}-\frac{y}{3})=10+10\\\frac{x}{7}+\frac{x}{3}=20\\\\\frac{10x}{21}=20\\x=42\end{gathered}7x+7y+(3x−3y)=10+107x+3x=202110x=20x=42

put x=42x=42 in equation (i)

\begin{gathered}42+y=70\\y=28\end{gathered}42+y=70y=28


surajkumar9587: that's why I said
jogita11: oo
jogita11: No , I'm not a computer student
jogita11: I had used it casually..
jogita11: By the way , I'm in class 8th
surajkumar9587: me too
jogita11: hmm
surajkumar9587: go enjoy
jogita11: hmm
jogita11: have a nice day ahead...
Similar questions