Two numbers add up to 70. One third of the larger number is 10 more than one
seventh of the smaller number. Find the numbers.
Answers
Answer:
Larger number = 42 and smaller number = 28
Let the larger number be x.
and smaller numaber be y.
according to question
\begin{gathered}x+y=70-(i)\\\therefore\frac{1}{3}of x=\frac{1}{7}of y+10\\\frac{x}{3}=\frac{y}{7}+10\\\frac{x}{3}-\frac{y}{7}=10-(ii)\end{gathered}x+y=70−(i)∴31ofx=71ofy+103x=7y+103x−7y=10−(ii)
Solving equation (i) and (ii)
Multiply \frac{1}{7}71 in equation(i) and 1 in equation (i)
\begin{gathered}x+y=70- (i)\times\frac{1}{7}\\\frac{x}{3}-\frac{y}{3}=10-(ii)\times1\\\end{gathered}x+y=70−(i)×713x−3y=10−(ii)×1
\begin{gathered}\frac{x}{7}+\frac{y}{7}=\frac{70}{7}\\\frac{x}{3}-\frac{y}{7}=10\\\frac{x}{7}+\frac{y}{7}=10-(iv)\\\frac{x}{3}-\frac{y}{7}=10-(v)\end{gathered}7x+7y=7703x−7y=107x+7y=10−(iv)3x−7y=10−(v)
Adding equation (iv) and (v)
\begin{gathered}\frac{x}{7}+\frac{y}{7}+(\frac{x}{3}-\frac{y}{3})=10+10\\\frac{x}{7}+\frac{x}{3}=20\\\\\frac{10x}{21}=20\\x=42\end{gathered}7x+7y+(3x−3y)=10+107x+3x=202110x=20x=42
put x=42x=42 in equation (i)
\begin{gathered}42+y=70\\y=28\end{gathered}42+y=70y=28