Math, asked by Harshitsoni1234, 1 year ago

Two numbers are in ratio 5:3 . If they differ by 18 ,what are the numbers?

Answers

Answered by ridhima73
0
Let the common ratio be x
5x-3x=18
2x=18
X=18/2
X=9


Hope it helps you! :-)
Answered by Sauron
10

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The Numbers are 45 and 27.

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

The ratio of Numbers = 5 : 3

They differ by = 18

To find :

The numbers

Solution :

Consider the numbers as

  • 5x
  • 3x

\boxed{\sf{5x - 3x = 18}}

\sf{\implies} \: 5x - 3x = 18

\sf{\implies} \: 2x = 18

\sf{\implies} \: x =  \dfrac{18}{2}

\sf{\implies} \:x = 9

\rule{300}{1.5}

Value of 5x

\sf{\implies} \:5 \times 9

\sf{\implies} \:45

Value of 3x

\sf{\implies} \:3 \times 9

\sf{\implies} \:27

\therefore The Numbers are 45 and 27.

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\sf{\implies} \:5(9)  - 3(9) = 18

\sf{\implies} \:45  - 27= 18

\sf{\implies} \:18 = 18

\therefore The Numbers are 45 and 27.

Similar questions