Math, asked by dsmaan905, 2 months ago


Two numbers are in the ratio 3:5. When 8 is added to each, the ratio changes
to 5:7. Identify the two numbers

Answers

Answered by thebrainlykapil
43

Given :

  • Two numbers are in the ratio 3:5. When 8 is added to each, the ratio changes
  • to 5:7.

 \\

To Find :

  • The Numbers

 \\

Solution :

➞ Let the first number be 3x

➞ Let the second number be 5x

After adding 8 :

➞ The first number = 3x + 8

➞ The second number = 5x + 8

⠀⠀

According to the Question :

⠀⠀⟼⠀⠀3x + 8/5x + 8 = 5/7

⠀⠀⟼⠀⠀7(3x + 8) = 5(5x + 8)

⠀⠀⟼⠀⠀21x + 56 = 25x + 40

⠀⠀⟼⠀⠀56 - 40 = 25x - 21x

⠀⠀⟼⠀⠀16 = 25x - 21x

⠀⠀⟼⠀⠀16 = 4x

⠀⠀⟼⠀⠀16/4 = x

⠀⠀⟼⠀⠀4 = x

Therefore :

➥ First Number = 3x

➥ First Number = 3 × 4

➥ First Number = 12

➥ Second Number = 5x

➥ Second Number = 5 × 4

➥ Second Number = 20

Thus the Number are 12 and 20

________________

Answered by Anonymous
28

Given :

  • Two numbers are in the ratio 3:5. When 8 is added to each, the ratio changes to 5:7

  \:  \:

  \:

To find :

  • The two numbers.

  \:  \:

  \:

Solution :

  • As in the question it is given That if 3:5 is added to the Number 8. So we will let the numbers be 3y and 5y. Firstly we will add (3y + 8)/(5x + 8) and their sum is 5/7. Then we will find the value of y and after finding the value of y. We will get the required numbers.

  \:  \:

  \:

\color {red}\star \: Let 1st Number be = 3y + 8

\color {red}\star \: 2nd Number be = 5y + 8

  \:  \:

According to Question :

  \:

  \:

~~~~~~~~~ :{ \implies \tt \dfrac{3y + 8}{5y + 8}  =  \dfrac{5}{7} }

  \:  \:

  \:  \:

~~~~~~~~~ :\implies \tt7 (3y + 8) = 5(5x + 8)

  \:  \:

  \:  \:

~~~~~~~~~ :\implies \tt21y + 56 = 25y + 40

  \:  \:

  \:  \:

~~~~~~~~~  :\implies \tt56 - 40 = 25y - 21y

  \:  \:

  \:  \:

~~~~~~~~~  :\implies \tt16 = 4y

  \:  \:

  \:  \:

~~~~~~~~~ :\implies \tt y =  \dfrac{16}{4}  \:

  \:  \:

  \:  \:

~~~~~~~~~  :\implies \tt{y = 4 }

  \:  \:

  \:  \:

{ \bf{First \:  Number = 3x}}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   = { \bf{\:3\times 4}}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \bf{ = 12}}

  \:  \:

  \:  \:

{ \bf{Second \:  Number = 5}}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: \:  \: \:  \:  \:  \:  \:  \: \:  \:   = { \bf{\:5\times 4}}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:  \:   \: \:  \:  { \bf{ = 20}}

  \:  \:

  \:  \:

{\underline{\boxed{ \frak{\color{blue} { \therefore{The \: Numbers \:  are  \: 12  \: and \:  20}}}}}}

_____________________

Similar questions