Math, asked by pushpahasini, 11 months ago

two numbers are in the ratio 3 is to 5 if each number is increased by 10 then the ratio becomes 5 is 27 the number are​

Answers

Answered by ItzMysticalBoy
9

Answers :

Correct Question : Two numbers are in the ratio 3 is to 5, if each number is increased by 10 then the ratio becomes 5 is to 7. The number are :

Numbers are in the ratio : 3:5

Let the required numbers be 3x and 5x.

Atq,

 \:  \:  \:  \:  \:  \:  \:  \:  \frac{3x + 10}{5x + 10}  =  \frac{5}{7}  \\  =  > 7(3x + 10) = 5(5x + 10) \\  =  > 21x + 70 = 25x + 50 \\  =  > 21x - 25x = 50 - 70 \\  =  >  - 4x =  - 20 \\  =  > \:  \:  \:  \:  \:  x \:  =  \frac{ - 20}{ - 4}  \\  =  >  \:  \:  \:  \:  \:  \: x = 5

Hence, the required numbers are

(3×5) =15 and (5×5)=25

Answered by Anonymous
175

AnswEr :

  • two no.s in ratio 3 : 5
  • each of them increased by 10 then ratio will be 5 : 7, Find Numbers.

⋆ Let the Number be 3a and 5a.

According to the Question Now :

⇒ Original Nos. Ratio + 10 = New Ratio

⇒ 3a + 10 / 5a + 10 = 5 / 7

  • By Cross Multiplication

⇒ 7 × (3a + 10) = 5 × (5a + 10)

⇒ 21a + 70 = 25a + 50

⇒ 70 - 50 = 25a - 21a

⇒ 20 = 4a

  • Dividing Both term by 4

a = 5

◗ First No. = 3a = 3(5) = 15

◗ Second No. = 5a = 5(5) = 25

Therefore, Numbers are 15 and 25.

Similar questions