Math, asked by ankitdutta1010, 1 year ago

two numbers are the ratio of 5:4, if each numbrr is increased by the 10 the ratio becomes 5:7 the number are​

Answers

Answered by Anonymous
135

Let one number be 5M and other number be 4M.

Now,

 \bold{Each \:number\: is\: increased \:by \:10 \:=>}\: \begin{cases} \text{One number = 5M + 10} \\ \text{Other number = 4M + 10} \end{cases}

If each number is increased by 10, then the ratio becomes 5:7.

According to question,

\implies\:\boxed{\sf{\dfrac{5M\:+\:10}{4M\:+\:10}\:=\:\dfrac{5}{7}}} ___ (eq 1)

Cross-multiply them

\implies\:\sf{7(5M\:+\:10)\:=\:5(4M\:+\:10}

\implies\:\sf{35M\:+\:70\:=\:20M\:+\:50}

\implies\:\sf{35M\:-\:20M\:=\:50\:-\:70}

\implies\:\sf{15M\:=\:-\:20}

\implies\:\sf{M\:=\:\frac{-20}{15}}

\implies\:\sf{M\:=\:\frac{-4}{3}}

Answer :-

 \bold{Numbers\:are \:=>}\: \begin{cases} \text{One number = -20/3} \\ \text{Other number = -16/3} \end{cases}

_____________________________________

Verification :-

From above calculations M = -4/3

Substitute value of M in (eq 1)

=> \sf{\dfrac{5M\:+\:10}{4M\:+\:10}\:=\:\dfrac{5}{7}}

=> \sf{\dfrac{5(-4/3)\:+\:10}{4(-4/3)\:+\:10}\:=\:\dfrac{5}{7}}

=> \sf{\dfrac{(-20/3)\:+\:10}{(-16/3)\:+\:10}\:=\:\dfrac{5}{7}}

=> \sf{\dfrac{(-20\:+\:30)/3}{(-16\:+\:30)/3}\:=\:\dfrac{5}{7}}

=> \sf{\dfrac{10}{14}\:=\:\dfrac{5}{7}}

=> \sf{\dfrac{5}{7}\:=\:\dfrac{5}{7}}

Answered by Anonymous
186

\bold{\underline{\underline{Answer:}}}

Greater Number = \bold{\frac{-20}{3}}

Smaller Number = \bold{\frac{-16}{3}}

\bold{\underline{\underline{Step\:-\:\:by\:-\:step\:explanation:}}}

Given :

  • Two numbers are the ratio of 5:4
  • Each numbrr is increased by 10 the ratio becomes 5:7

To find :

  • The numbers

Solution :

Let x be the common multiple of the ratio 5:4

° Greater Number = 5x

Smaller Number = 4x

\bold{\underline{\underline{As\:per\:the\:question:}}}

  • Each numbrr is increased by 10 the ratio becomes 5:7

° Greater Number = 5x + 10

Smaller Number = 4x + 10

Ratio = 5:7

Constituting it mathematically and solving further,

\implies \bold{\frac{5x+10}{4x+10}} = \bold{\frac{5}{7}}

Cross Multiplying,

\implies \bold{7(5x+10)\:=5(4x+10)}

\implies \bold{35x+70\:=20x+50}

\implies \bold{35x-20x\:=+50-70}

\implies \bold{15x\:=-20}

\implies \bold{x\:=\frac{-20}{15}}

\implies \bold{x\:=\frac{-4}{3}}

Substitute \bold{x\:=\frac{-4}{3}} in the values of the ratio,

Greater Number = 5x = \bold{5\times{\frac{-4}{3}}}

Greater Number = \bold{\frac{-20}{3}}

Smaller Number = 4x = \bold{4\times{\frac{-4}{3}}}

Smaller Number = \bold{\frac{-16}{3}}

Similar questions